Determination of pressure and load characteristics for flexible revolving wings by means of tomographic PIV

2016-10-25
Van De Meerendonk, Remco
Perçin, Mustafa
Van Oudheusden, Bas W.
This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio wings. The pressure field and load characteristics are successfully reconstructed from the phase-locked tomographic measurements in three independently measured volumes along the span of the wing. The vortical structures encompass a low pressure region and the spatial gradient information of the pressure field provides greater insights in their stability mechanisms. The low pressure region associated with the leading edge vortex and its close position to the wing surface are responsible for the high resultant forces acting on the wing. Simultaneous force measurements show a reasonable agreement with the reconstructed loads. The sectional lift and drag characteristics provide greater insights into the distributed load mechanisms along the span.
International Workshop on Non-Intrusive Optical Flow Diagnostic

Suggestions

Design of a traverse system for the characterization of a large-scale wind tunnel
Ulu, Tunahan; Perçin, Mustafa; Department of Aerospace Engineering (2022-9)
This study presents the design and simulations of a traverse system and preliminary characterization measurements of the RÜZGEM large-scale wind tunnel. In the first phase of the study, the traverse system was simulated aerodynamically using computational fluid dynamics (CFD) tools. The effects of the rectangular, whole profile and partial profile traverse mechanisms on the measurements were examined. The probe lengths were studied in detail to determine the most suitable length. According to the simulation...
Determination of critical submergence depth at horizontal intakes
Haspolat, Emre; Göğüş, Mustafa; Köken, Mete; Department of Civil Engineering (2015)
The purpose of the study is to investigate the formation of air entraining vortices under both symmetrical and asymmetrical approach flow conditions in an experimental setup of a horizontal water intake structure composed of a reservoir-pipe system. To determine at which critical submergence the air entraining vortices forming; a series of experiments were conducted in the experimental setup with horizontal pipes of four different diameters. Approach channel side walls of the intake structure model are adju...
Assessment of flood hazards due to overtopping and piping in Dalaman Akköprü Dam, employing both shallow water flow and diffusive wave equations
Yilmaz, Kutay; Darama, Yakup; Oruc, Yunus; Melek, Abiddin Berhan (2023-01-01)
This study was carried out to determine flood propagation using shallow water equations (SWEs) and diffusive wave equations (DWEs) to reveal how the flood modeling results differ in terms of flow depth, flow velocity, and hazard level. The solution methods were tested based on the hypothetical failure of the Dalaman Akköprü Dam resulting from two failure mechanisms: overtopping (OT) and piping (PP). A 2D hydraulic model was constructed using HEC-RAS to determine the propagation of flood waves due to the fai...
Measurement of leading and trailing edge vortex shedding mechanism for flapping airfoil in hover using particle image velocimetry technique
Çekinmez, Aybüge; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
In this thesis, the vortex shedding formation/mechanism for flapping airfoil making the figure of eight motion in hover is investigated experimentally using Particle Image Velocimetry (PIV) technique and numerically for some parameters determined. For this investigation, a new flapping mechanism is designed and implemented to the existing water tank, where the airfoil is traversed laterally, such that the motion depicts a figure of eight. The traversing system is moved both in x (horizontal) and y (vertical...
Analysis of the pressure fields in a swirling annular jet flow
Perçin, Mustafa; van Oudheusden, B. W. (2017-12-01)
In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional time-resolved pressure fields using the governing flow equations. Both time-averaged and instantaneous flow structures are discussed, including a characterization of the first-and second-order statistical moments. ...
Citation Formats
R. Van De Meerendonk, M. Perçin, and B. W. Van Oudheusden, “Determination of pressure and load characteristics for flexible revolving wings by means of tomographic PIV,” presented at the International Workshop on Non-Intrusive Optical Flow Diagnostic, TU Delft, The Aerospace Engineering Department, Delft, Netherlands 25-26 October 2016, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70731.