Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
IIR Filter Design Using Immune Algorithm
Date
2003-09-04
Author
Kalınlı, Adem
Karaboğa, Derviş
Metadata
Show full item record
Item Usage Stats
280
views
0
downloads
Cite This
Over the recent years, several studies have been carried out by the researchers to describe a general, flexible and powerful design method based on modern heuristic optimisation algorithms for infinite impulse response (IIR) digital filters since these algorithms have the ability of finding global optimal solution in a nonlinear search space. One of the modern heuristic algorithms is the artificial immune algorithm which implements a learning technique inspired by human immune system. However, the immune system has not attracted the same kind of interest from researchers as other heuristic algorithms. In this work, an artificial immune algorithm is described and applied to the design of IIR filters, and its performance is compared to that of genetic and touring ant colony optimisation algorithms.
Subject Keywords
Immune algorithm
,
Genetic algorithm
,
Ant colony algorithm
,
IIR filter design
URI
https://hdl.handle.net/11511/70817
DOI
https://doi.org/10.1016/j.engappai.2005.03.009
Collections
Other, Article
Suggestions
OpenMETU
Core
An interactive preference based multiobjective evolutionary algorithm for the clustering problem
Demirtaş, Kerem; Özdemirel, Nur Evin; Karasakal, Esra; Department of Industrial Engineering (2011)
We propose an interactive preference-based evolutionary algorithm for the clustering problem. The problem is highly combinatorial and referred to as NP-Hard in the literature. The goal of the problem is putting similar items in the same cluster and dissimilar items into different clusters according to a certain similarity measure, while maintaining some internal objectives such as compactness, connectivity or spatial separation. However, using one of these objectives is often not sufficient to detect differ...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Shape Optimizations of Metallic Sheets Using a Multigrid Approach
Altinoklu, Askin; Karaova, Gokhan; Ergül, Özgür Salih (2017-09-27)
We present a novel multigrid approach for the shape optimizations of corrugated metallic sheets by using genetic algorithms (GAs) and the multilevel fast multipole algorithm (MLFMA). The overall mechanism is obtained by an efficient integration of GAs and MLFMA, while the optimizations are improved by applying multiple grids at different layers. We show that the multigrid approach provides more effective optimizations than the conventional no-grid optimizations that employ the discretization nodes directly....
Optimizations of antennas using heuristic algorithms supported by the multilevel fast multipole algorithm
Önol, Can; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2015)
In this study, an optimization environment based on heuristic algorithms supported by the multilevel fast multipole algorithm (MLFMA) is presented for different antenna problems involving either excitation or geometry optimizations. The heuristic algorithms are implemented in-house by aiming more effective interactions between electromagnetic solvers and optimization algorithms, instead of black box interactions. Excitation optimizations of various array geometries for desired radiation characteristics are ...
Shape Optimizations of Metallic Sheets for Improved Near-Zone Scattering, Reflection, and Focusing Characteristics
Altinoklu, Askin; Ergül, Özgür Salih (2017-10-12)
We consider full-wave analysis and optimizations of metallic sheets to obtain desired electromagnetic responses in the near-zone field intensity and power density distributions. Given a metallic sheet of finite size, deformations are applied to achieve diverse scattering and reflection characteristics, particularly focusing and collecting electromagnetic power at different locations. Optimizations are performed by employing genetic algorithms in a multigrid scheme on the discretized geometry, while each tri...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Kalınlı and D. Karaboğa, “IIR Filter Design Using Immune Algorithm,” 2003, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70817.