An interactive preference based multiobjective evolutionary algorithm for the clustering problem

Demirtaş, Kerem
We propose an interactive preference-based evolutionary algorithm for the clustering problem. The problem is highly combinatorial and referred to as NP-Hard in the literature. The goal of the problem is putting similar items in the same cluster and dissimilar items into different clusters according to a certain similarity measure, while maintaining some internal objectives such as compactness, connectivity or spatial separation. However, using one of these objectives is often not sufficient to detect different underlying structures in different data sets with clusters having arbitrary shapes and density variations. Thus, the current trend in the clustering literature is growing into the use of multiple objectives as the inadequacy of using a single objective is understood better. The problem is also difficult because the optimal solution is not well defined. To the best of our knowledge, all the multiobjective evolutionary algorithms for the clustering problem try to generate the whole Pareto optimal set. This may not be very useful since majority of the solutions in this set may be uninteresting when presented to the decision maker. In this study, we incorporate the preferences of the decision maker into a well known multiobjective evolutionary algorithm, namely SPEA-2, in the optimization process using reference points and achievement scalarizing functions to find the target clusters.
Citation Formats
K. Demirtaş, “An interactive preference based multiobjective evolutionary algorithm for the clustering problem,” M.S. - Master of Science, Middle East Technical University, 2011.