Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Evaluation and Comparisons of the Models to Calculate Solar Irradiation on Inclined Solar Panels for Ankara
Date
2017-11-29
Author
Özden, Talat
Akınoğlu, Bülent Gültekin
Karaveli, Abdullah Buğrahan
Metadata
Show full item record
Item Usage Stats
3
views
0
downloads
Cite This
In the optimization and feasibility analysis of renewable energy systems, the accuracy of the simulation methods is extremely important. Thus, in the case of solar energy systems, estimating the monthly average daily solar irradiation incident on inclined solar panels is the main step of long-term feasibility analysis toward reaching the viable investments. In fact, most solar energy investor companies use silicon solar irradiation measuring instruments in Turkey although only a few of them also measure the solar irradiation using accurate instrumentation. Nevertheless, the need to estimate is still very essential and will continue to be so, mainly because of the fact that such on-land measurements are localized at single points on the Earth. In fact, the input, must be estimated or measured accurately to reach the efficiencies (output/input) of the systems. Consequently, this study analysis and compares the models to predict the solar irradiation on inclined surface in the most accurate way for Ankara. To this aim, the measurements have been taken since April 2016. Hourly isotropic model, two anisotropic models HDKR and Perez are used to estimate hourly solar irradiation on inclined surface and converted into monthly mean daily values. Meanwhile, isotropic sky model based on monthly average daily values is also used in the calculations, by utilizing a recent methodology developed by the authors to predict the diffuse component of solar irradiation falling on a horizontal surface. The analysis is carried out using the measurements of two Kipp and Zonen (CMP11) thermopile pyranometers and a new generation silicon pyranometer. The results show that HDKR is the best method. Another important result shows that the measurements of new generation silicon pyranometer has still considerable errors.
Subject Keywords
Pyranometer
,
Solar Radiation
,
Prediction of Solar Irradiation
URI
http://www.eupvsec-proceedings.com/proceedings/dvd.html
https://hdl.handle.net/11511/70890
DOI
https://doi.org/10.4229/EUPVSEC20172017-6BV.3.24
Collections
Department of Physics, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Özden, B. G. Akınoğlu, and A. B. Karaveli, “Evaluation and Comparisons of the Models to Calculate Solar Irradiation on Inclined Solar Panels for Ankara,” RAI Convention & Exhibition Centre AMSTERDAM, Netherland, 2017, p. 2501 , Accessed: 00, 2021. [Online]. Available: http://www.eupvsec-proceedings.com/proceedings/dvd.html.