Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Comparison of Temperature Profile and Heat Transfer Predictions With Statistically Modeled Data From a Cooled 1 1 2 Stage High Pressure Transonic Turbine
Date
2013-06-03
Author
Kahveci, Harika Senem
KIRTLEY, KEVIN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
This paper compares predictions from a 3-D Reynolds-Averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, and the wall temperature and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically-modeled temperature profiles to generate the inlet boundary conditions for the Computational Fluid Dynamics (CFD) analysis, the sensitivity of blade heat transfer predictions due to the variation in the inlet temperature profile and uncertainty in wall temperature measurements and surface roughness is calculated. All predictions are performed with and without cooling. Heat transfer predictions match reasonably well with the statistical representation of the data, both with and without cooling. Predictive precision for this study is driven primarily by inlet profile uncertainty followed by surface roughness and gauge position uncertainty.
Subject Keywords
Surface
,
Rotor
,
Hot-streaks
,
Flux measurements
URI
https://hdl.handle.net/11511/36478
DOI
https://doi.org/10.1115/gt2013-94242
Collections
Department of Aerospace Engineering, Conference / Seminar