Comparison of Temperature Profile and Heat Transfer Predictions With Statistically Modeled Data From a Cooled 1 1 2 Stage High Pressure Transonic Turbine

2013-06-03
This paper compares predictions from a 3-D Reynolds-Averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, and the wall temperature and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically-modeled temperature profiles to generate the inlet boundary conditions for the Computational Fluid Dynamics (CFD) analysis, the sensitivity of blade heat transfer predictions due to the variation in the inlet temperature profile and uncertainty in wall temperature measurements and surface roughness is calculated. All predictions are performed with and without cooling. Heat transfer predictions match reasonably well with the statistical representation of the data, both with and without cooling. Predictive precision for this study is driven primarily by inlet profile uncertainty followed by surface roughness and gauge position uncertainty.

Suggestions

Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine
Kahveci, Harika Senem (ASME International, 2014-06-01)
This paper compares predictions from a 3D Reynolds-averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature p...
Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range
Khachatryan, V.; et. al. (Springer Science and Business Media LLC, 2015-05-01)
This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb(-1) collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A compari...
Measurement of differential top-quark-pair production cross sections in pp collisions at root s=7 TeV
Chatrchyan, S.; et. al. (Springer Science and Business Media LLC, 2013-03-01)
Normalised differential top-quark-pair production cross sections are measured in pp collisions at a centre-of-mass energy of 7 TeV at the LHC with the CMS detector using data recorded in 2011 corresponding to an integrated luminosity of 5.0 fb(-1). The measurements are performed in the lepton + jets decay channels (e + jets and mu + jets) and the dilepton decay channels (e(+)e(-), mu(+)mu(-), and mu(+/-)e(-/+)). The t (t) over bar differential cross section is measured as a function of kinematic properties ...
Characterization and fabrication of silicon thin films for solar cell applications
Karaman, Mehmet; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Eurasian Studies (2011)
In this thesis study, fabrication and characterization of silicon thin films prepared by magnetron sputtering and electron beam evaporation for solar cell applications have been investigated. In the first part of the study, magnetron sputtering method was used to fabricate thin hydrogenated amorphous silicon (a-Si:H) film on a Si substrate. Some samples were prepared on glass substrate for the basic characterizations like transmission and resistivity. Dark and illuminated I-V characteristics of the silicon ...
A New Method for Leakage Inductance Calculation of Transverse Flux Machines
Zafarani, Mohsen; Moallem, Mehdi; Ghadamyari, Mohammad Adib (2011-09-10)
This paper presents a new analytical method for leakage inductance calculation of transverse flux permanent magnet machines. In this method, leakage flux paths are predicted base on the finite element results, and then all paths would be modeled by flux tubes. Finally, the inductance of the machine would be obtained by calculation of the permeance of flux tubes. The validity of the proposed model is verified by comparing the Finite Element results with the results obtained from the proposed approach. Compar...
Citation Formats
H. S. Kahveci, “Comparison of Temperature Profile and Heat Transfer Predictions With Statistically Modeled Data From a Cooled 1 1 2 Stage High Pressure Transonic Turbine,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36478.