Multiple Aspect Design of an Unmanned Aerial Vehicle Wing

2011-09-14
Arzu, Kayır
Yaman, Yavuz
The design of aircraft structures is a critical issue, because the structure has to provide enough strength while keeping the weight minimum. In order to achieve a successful design, the aircraft structures must meet all design requirements in addition to satisfying the optimal weight criteria. Materials selection affects the structural design, weight and strength. The material also has a direct impact on production technique and the overall cost. In this study, three different candidate materials were studied in the structural design of an unmanned aerial vehicle wing and their structural characteristics were compared.
6. Ankara International Aerospace Conference (14-16 September 2011)

Suggestions

Post-buckling behaviour of metallic skin-stringer assemblies and buckling of composite flat panels
Aydın, Enes; Kayran, Altan; Department of Aerospace Engineering (2018)
Stiffened thin panels are very common and important structural elements in aerospace structures because of the weight and stiffness advantages they provide. The stiffener section is important to determine the support condition that the stiffener provides on the unloaded edges of the panel. In the first phase of the thesis study, the effect of the boundary conditions on the buckling coefficients of stiffened metal flat panels is investigated utilizing finite element and empirical approaches. Empirical approa...
Development of bolted flange design tool based on finite element analysis and artificial neural network
Yıldırım, Alper; Kayran, Altan; Department of Aerospace Engineering (2015)
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of many structural analyses. Bolt size, number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main approach...
DEVELOPMENT OF BOLTED FLANGE DESIGN TOOL BASED ON FINITE ELEMENT ANALYSIS AND ARTIFICIAL NEURAL NETWORK
Yildirim, Alper; Kayran, Altan; Gulasik, Hasan; Çöker, Demirkan; Gürses, Ercan (2015-11-19)
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of Many structural analyses. Bolt size, the number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main appr...
Optimal wind bracing systems for multi-storey steel buildings
Yıldırım, İlyas; Hasançebi, Oğuzhan; Department of Civil Engineering (2009)
The major concern in the design of the multi-storey buildings is the structure to have enough lateral stability to resist wind forces. There are different ways to limit the lateral drift. First method is to use unbraced frame with moment-resisting connections. Second one is to use braced frames with moment-resisting connections. Third one is to use pin-jointed connections instead of moment-resisting one and using bracings. Finally braced frame with both moment-resisting and pin-jointed connections is a solu...
Fatigue and static behavior of curved composite laminates
Taşdemir, Burcu; Çöker, Demirkan; Department of Aerospace Engineering (2018)
By virtue of the fact that curved composite laminates which are utilized as load carrying subcomponents in aircraft and wind turbine structures are subjected to cyclic loading during their operating time, it is crucial to understand fatigue failure mechanisms at least as much as static failure mechanisms. With the intention of understanding fatigue failure mechanisms and thus improving fatigue life of structures, these curved laminates are investigated experimentally under static and fatigue loadings. The f...
Citation Formats
K. Arzu and Y. Yaman, “Multiple Aspect Design of an Unmanned Aerial Vehicle Wing,” presented at the 6. Ankara International Aerospace Conference (14-16 September 2011) , METU, Ankara TURKEY, 2011, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70980.