Experimental Investigation on the Low Cycle Fatigue Life of Piles

2018-07-13
Karalar, Memduh
Dicleli, Murat
In this study, the low cycle fatigue tests are conducted to investigate the fatigue life of steel H-piles subjected to thermal induced cyclic strains/displacements. Review of literature revealed that there are few experimental research data on the low cycle fatigue performance of integral bridge steel H-piles. For this purpose, experimental studies on full scale steel H-pile specimens are conducted to simulate cyclic behavior of steel H-piles under thermal effects in integral bridges by considering the effect of axial load combined with large amplitude strain cycles with various amplitude levels. Using experimental test results, the effect of axial load level is investigated on the low cycle fatigue performance of integral bridge steel H-piles. It is observed that the effect of axial load on the low cycle fatigue performance of integral bridge steel H-piles are so important to reduce the bending stresses in the steel H-piles and also increase the low-cycle fatigue performance of steel H-piles at the abutments of integral bridges at the moderate strain amplitudes. Moreover, it is observed that at large strain amplitudes the effect of local buckling should be considered more than the effect of axial load on the low cycle fatigue life of steel H-piles at the abutments of integral bridges.
9th International Conference on Bridge Maintenance, Safety and Management, 9 - 13 Temmuz 2018

Suggestions

Experimental investigation on the low cycle fatigue life of piles
Dicleli, Murat (2018-07-13)
In this study, the low cycle fatigue tests are conducted to investigate the fatigue life of steel H-piles subjected to thermal induced cyclic strains/displacements. Review of literature revealed that there are few experimental research data on the low cycle fatigue performance of integral bridge steel H-piles. For this purpose, experimental studies on full scale steel H-pile specimens are conducted to simulate cyclic behavior of steel H-piles under thermal effects in integral bridges by considering the effe...
Experimental investigation of axial load on low cycle fatigue performance of steel H-piles in integral bridges
Dicleli, Murat (null; 2017-08-28)
In this study, the effect of axial load on the low cycle fatigue performance of integral bridge steel H–piles is investigated. Review of literature revealed that there is no experimental research data on the effect of axial load on the low cycle fatigue performance of integral bridge steel H-piles. For this purpose, experimental studies on full scale steel H-pile specimens are conducted to simulate cyclic behavior of steel Hpiles under thermal effects in integral bridges by considering the effect of axial l...
Evaluation of the Performance Limit States of Reinforced Concrete Columns in View of Experimental Observations
Acun, Bora; Sucuoğlu, Haluk (2011-07-01)
In this study, twelve full-scale column specimens designed for pure flexure were tested under repetitive displacement cycles with high amplitude. Two typical column designs were employed in the production of samples representing sub-standard and code-conforming columns, respectively. The main variable in the experiments was the histories of the imposed displacement amplitudes. The deformation-based performance limits proposed by Eurocode 8, ASCE/SEI 41 and Turkish Seismic Code (TDY-2007) for sub-standard co...
A Computational analysis on rotor-propeller arm interaction in hovering flight
Yener, Serkan.; Perçin, Mustafa; Department of Aerospace Engineering (2019)
This study presents a computational analysis on the interaction between rotor and different rotor frame-arm geometries in hovering flight. The influence of the frame arm on the aerodynamic performance of the rotor is assessed by using commercially available computational fluid dynamics (CFD) solver software ANSYS Inc. Fluent 17. Numerical results are validated for hovering and forward vertical climb flight conditions with thrust and torque measurements conducted on a 16x4 carbon fiber propeller. The thrust ...
EXPERIMENTAL INVESTIGATION OF FATIGUE DAMAGE ACCUMULATION IN 1100-AL ALLOY
BILIR, OG (Elsevier BV, 1991-01-01)
The cumulative fatigue damage characteristics of 1100 Al alloy were studied to gain a better understanding of the effects of the loading sequence, the percentage of initial applied load cycles and the stress ratio.
Citation Formats
M. Karalar and M. Dicleli, “Experimental Investigation on the Low Cycle Fatigue Life of Piles,” presented at the 9th International Conference on Bridge Maintenance, Safety and Management, 9 - 13 Temmuz 2018, Melbourne, Avustralya, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/71218.