Low-energy alinite cement from soda sludge waste

Uçal, Gultekin O.
Mahyar, Mahdi
Tokyay, Mustafa
Yaman, İsmail Özgür
Alinite cement which was developed in 1970s is an alternative inorganic, low-energy binding material in which chlorine containing wastes can be utilized. Although potentially a suitable candidate, there is little research on utilization of soda sludge waste in cementitious systems. In this experimental study, synthesis and optimization of the properties of alinite cement by using soda sludge waste as a raw material was carried out by investigating optimum calcination temperature and calcination duration, chemical and mineralogical compositions, and hydration products. When raw meal was calcined at 1150°C for 2 hours, the resulting clinker contained alinite, belite, and calcium aluminochloride phases with sufficiently low free calcium oxide and alkali content. Upon hydration of ground alinite cement clinker and gypsum mixture, peaks of portlandite, Friedel's salt-like phase, and calcium chloride silicate sulfate were distinguished in X-Ray diffractograms. Compressive strength tests of alinite cement mortars gave satisfactory results. © 2017 American Concrete Institute. All rights reserved.
10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, ICCM (2017)


Hydration of alinite cement produced from soda waste sludge
Ucal, Gultekin Ozan; Mahyar, Mandi; Tokyay, Mustafa (2018-03-10)
Alinite cement is an alternative inorganic, low-energy binding material. This experimental study investigated hydration characteristics of alinite cement which was produced by using soda waste sludge as a raw material. Paste microstructures were studied by X-ray powder diffraction and scanning electron microscopy. Heat of hydration and compressive strength values were also determined. Formation of C-S-H gel and calcium chloroaluminate hydrates which resemble Friedel's salt was observed. Induction period of ...
Properties of alinite cement produced by using soda sludge
Kesim, Asli Gunes; Tokyay, Mustafa; Yaman, İsmail Özgür; Öztürk, Abdullah (2013-04-01)
A production route of alinite cement clinker using the waste material of the Solvay process of the soda industry as the main raw material was searched. Soda sludge (73.5 wt%), clay (26.3 wt%) and minor amounts of iron ore (0.2 wt%) were mixed to obtain a raw mix that is later burned at nine different burning schemes. Four different burning temperatures (1050, 1100, 1150 and 1200 degrees C) and three different burning durations (60, 90 and 180 min) were applied for clinkerisation. The clinkers obtained were ...
Low-energy alinite cement production by using soda waste sludge
Uçal, Gültekin Ozan; Tokyay, Mustafa; Department of Civil Engineering (2016)
Increased environmental awareness and the concept of sustainable development have impacts on cement industry as on many other fields. Alinite cement which was developed in the 1970s may be an alternative inorganic, low energy binding material. In this study, synthesis and optimization of the properties of alinite cement was carried out by using soda waste sludge as a raw material. Soda waste sludge was mixed with limestone, clay, and iron ore in different proportions. All mixes were burned at 1050oC or 1150...
Effects of separate and intergrinding on some properties of portland composite cements
Soyluoğlu, Serdar; Tokyay, Mustafa; Department of Cement Engineering (2009)
In the production of cement, to increase the cement/clinker ratio and decrease CO2 emission, the most important alternative is to produce mineral admixture incorporated cements (CEM II-III-IV-V) instead of portland cement (CEM I). These cements are usually produced by intergrinding the portland cement clinker and the mineral admixtures. However, the difference between grindabilities of the different components of such cements may cause significant effects on the particle size distribution and many other pro...
Utilization of fly ash-portland cement binary systems to control alkali-silica reaction
Çelen, Ahmet Ziya; Akgül, Çağla Meral.; Department of Civil Engineering (2019)
The highly alkaline pore solution of the portland cement concrete is not an ideal environment for certain reactive aggregates with poorly-crystalline or amorphous silica phases. In this environment, these aggregates partially or completely disintegrate resulting in formation of a hydrophilic, amorphous gel mainly composed of alkalis and water from the pore solution of the hydrated cement matrix and silica from the aggregates. The newly formed alkali-silica reaction (ASR) gel can expand by absorbing huge amo...
Citation Formats
G. O. Uçal, M. Mahyar, M. Tokyay, and İ. Ö. Yaman, “Low-energy alinite cement from soda sludge waste,” presented at the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, ICCM (2017), Montreal, Canada, 2017, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85043373093&origin=inward.