Design of an LPV Based Fractional Controller for the Vibration Suppression of a Smart Beam

2011-12-01
Onat, Cem
Şahin, Melin
Yaman, Yavuz
Eswar, Prasad
Saılu, Nemana
One of the major problems encountered in the active vibration control of aircraft wings is the changing mass due to the in-flight fuel consumption. In this study, a Linear Parameter Varying (LPV) based fractional controller is designed for the suppression of the flexural vibrations of a smart beam. The designed controller is sensitive to the varying mass properties. The smart beam studied was a cantilever aluminium beam with eight surface bonded Lead-Zirconate-Titanate (PZT) patches. The smart beam was excited at its first resonance frequency (approx. at 7 Hz) with a group of piezoelectric actuator patches and the response of the smart beam was monitored from a single piezoelectric sensor patch in order to obtain the necessary experimental frequency response for the system identification. The control strategy was based on the fractional derivation of the measurement signal and filtering that signal by using a developed filter which was designed to characterise the dynamic properties of the first mode of the smart beam. The filter is designed as an LPV filter and is scheduled by the mass of the smart beam. The applications were conducted by attaching different masses to the tip of the smart beam. Both time domain and frequency domain responses were then analysed. It was shown that the designed controller was satisfactorily capable of suppressing the smart beam vibrations even at the presence of varying mass characteristics.
CANSMART2011, International Workshop on Smart Materials & Structures and NDT in Aerospace (2 - 04 Kasım 2011)

Suggestions

Investigation of fatigue behaviour of external stores under fixed wing aircraft platforms during random vibration
Okur, Emre; Dağ, Serkan; Department of Mechanical Engineering (2015)
In this study, fatigue behaviour of an external store during captive carriage at the underwing and wingtip of a fixed wing aircraft platform is investigated. The F-16C jet aircraft was determined as a fixed wing aircraft platform in this thesis which is commonly used by Turkish Army. As the external store, a data measurement store (DMS) was designed to measure loads during captive carrage. While the DMS was being attached to the F-16C jet aircraft, it flew in 5 different sorties. Acceleration and strain dat...
Designing autopilot and guidance algorithms to control translational and rotational dynamics of a fixed wing VTOL UAV
Güçlü, Anı; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2020)
Guidance and autopilot algorithms are designed and applied to a fixed wing VTOL air vehicle. The algorithms are developed on a rotary wing and a fixed air vehicle. Each air vehicle is identified by experimentation to reduce the discrepancies among the system model and the actual air vehicles. Designed controllers for the air vehicles are deployed to Pixhawk Cube controller board. Indoor and outdoor flight tests are carried out. For the rotary wing air vehicle, active disturbance rejection control algorithms...
In-flight Ice formation simulation on finite wings and air intakes
Özgen, Serkan (2012-04-01)
In the present article, in-flight ice formation on finite wings and air intakes of low-speed aircraft are numerically studied. The approach to the problem involves calculation of the velocity field using a three-dimensional panel method. Using the calculated velocity field, the droplet trajectories and droplet impact locations are computed yielding the droplet collection efficiency distribution. In the next step, convective heat transfer coefficient distributions around the geometries are calculated using a...
Development of a hybrid global optimization algorithm and its application to helicopter rotor structural optimization
Bilen, Muhammed Emre; Özgüven, H. Nevzat.; Department of Mechanical Engineering (2019)
Helicopters are notorious for their high vibration levels and the rotor system are the main contributors to the problem. The rotor vibrations can be minimized by optimizing the rotor structure, which require time-consuming high-fidelity solution for vibration predictions. To solve this problem, an effective and efficient global search algorithm called Explorer-Settler Optimization algorithm is developed by combining the advantageous aspects of Particle Swarm Optimization and Nelder-Mead Optimization algorit...
ANALYTICAL INVESTIGATION OF AERO-ELASTIC BEHAVIOR OF AIRCRAFT COMPOSITE BOX WINGS IN UNSTEADY COMPRESSIBLE FLOW
Farsadi, T.; Haddadpour, H.; Yuceoglu, U. (2011-11-17)
In this study, an anisotropic thin-walled "Composite Box Beam" as the "Wing System" is used to consider the effects of the fiber orientation and the lay-up configuration on the aeroelastic stability and the dynamic response of an aircraft wing. The present "Circumferentially Asymmetric Stiffness Model (CAS)" takes into account a group of non-classical effects; such as the transverse shear, the material anisotropy, warping inhibition, etc. The "Aerodynamic Strip Method" based on "Wagner Functions" in unstead...
Citation Formats
C. Onat, M. Şahin, Y. Yaman, P. Eswar, and N. Saılu, “Design of an LPV Based Fractional Controller for the Vibration Suppression of a Smart Beam,” presented at the CANSMART2011, International Workshop on Smart Materials & Structures and NDT in Aerospace (2 - 04 Kasım 2011), Montreal, Kanada, 2011, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73125.