Design Optimization of Variable Stiffness Composite Laminates Using Surrogate Models for Compliance and Buckling Load

2017-09-22
İnci, Hasan
Kayran, Altan
Usage of composite materials in aerospace industry has never been so wide in our world. Starting from the development of composites, the analyses were only done for straight fiber composites. With the improved manufacturing capabilities, designers have the ability to design more complex shapes for composites, which allows more efficient structures. In the past two decades, variable stiffness (VS) composite laminates are introduced to the literature. Within these two decades, researchers working on VS concept are progressively increasing, due to the advantages over straight fiber laminates. Even there are advantages of this concept; the main disadvantage of VS composite laminates is the higher design cost of the problems, mainly the need for finite element analysis (FEA). In each design optimization cycle, there is a need for FEA. In this study, to reduce the design cost of the design optimization of VS composite laminates, a surrogate model is used instead of FEA in the optimization process. With the two problems solved in this study, it is seen that the total optimization times are reduced significantly. The response of the VS composite laminate is very well modeled with the surrogate model generated.
9th Ankara International Aerospace Conference

Suggestions

Dynamic failure of curved CFRP composite laminates under quasi static loading
Çöker, Demirkan (null; 2015-04-15)
In aerospace and wind energy industries, new advances in composite manufacturing technology and high demand for lightweight structures are fostering the use of composite laminates in a wide variety of shapes as primary load carrying elements. However, once a moderately thick laminate takes highly curved shape, such as an L-shape, Interlaminar Normal Stresses (ILNS) are induced together with typical Interlaminar Shear Stresses (ILSS) on the interfaces between the laminas. The development of ILNS promotes mod...
Design optimization of truss structures using genetic algorithms
Ünalmış, Dilek; Kayran, Altan; Department of Aerospace Engineering (2012)
Design optimization of truss structures is a popular topic in aerospace, mechanical, civil, and structural engineering due to benefits to industry. Common design problem for the structures is the weight minimization. Especially in aerospace engineering the minimization of the weight of the total structure gets the highest importance in the design. This study focuses on the design optimization of 2D and 3D truss structures. The objective function is the total mass of the structure which is subjected to stres...
Delamination-Debond Behaviour of Composite T-Joints in Wind Turbine Blades
Gulasik, H.; Çöker, Demirkan (2014-06-20)
Wind turbine industry utilizes composite materials in turbine blade structural designs because of their high strength/stiffness to weight ratio. T-joint is one of the design configurations of composite wind turbine blades. T-joints consist of a skin panel and a stiffener co-bonded or co-cured together with a filler material between them. T-joints are prone to delaminations between skin/stiffener plies and debonds between skin-stiffener-filler interfaces. In this study, delamination/debond behavior of a co-b...
Curved beam strength and toughness of thin ply cfrp non crimp fabric laminates
Arca, Miray; Papila, Melih; Çöker, Demirkan (null; 2015-09-12)
Carbon fiber reinforced plastics are most widely used composite materials in aerospace and wind turbine industries. Their superior in plane properties with light weight structures and also ability to change and design the structure and form make composites preferable to metallic materials. Composites are applied to the primary load carrying members with complex and curved geometries with the new manufacturing techniques. On the other hand, failure mechanisms of composites are different and complicated than ...
Structural design, analysis and composite manufacturing applications for a tactical unmanned air vehicle
Soysal, Sercan; Kayran, Altan; Department of Aerospace Engineering (2008)
In this study structural design, analysis and composite manufacturing applications for a tactical UAV, which was designed and manufactured in Aerospace Engineering Department of Middle East Technical University (METU), is introduced. In order to make an accurate structural analysis, the material and loading is modeled properly. Computational fluid dynamics (CFD) was used to determine the 3D pressure distribution around the wing and then the nodal forces were exported into the finite element program by means...
Citation Formats
H. İnci and A. Kayran, “Design Optimization of Variable Stiffness Composite Laminates Using Surrogate Models for Compliance and Buckling Load,” presented at the 9th Ankara International Aerospace Conference, Türkiye, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73702.