Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Vertical Seawall Crest Modifications for Overtopping
Date
2018-08-03
Author
Kısacık, Doğan
Özyurt Tarakcıoğlu, Gülizar
Baykal, Cüneyt
Kaboğlu, Gökhan
Metadata
Show full item record
Item Usage Stats
26
views
0
downloads
Cite This
Crest modifications such as a storm wall, parapet or a bullnose are widely used to reduce the wave overtopping over coastal structures where spatial and visual demands restrict the crest heights, especially in urban areas. Although reduction factors of these modifications have been studied for sloped structures in EurOtop Manual (2016), there is limited information regarding the vertical structures. This paper presents the experimental set-up and first results of wave overtopping tests for a vertical wall with several different super structure types: a) seaward storm wall, b) sloping promenade, c) landward storm wall, d) stilling wave basin (SWB), e) seaward storm wall with parapet, f) landward storm wall on the horizontal promenade with parapet, g) landward storm wall with parapet, h) stilling wave basin (SWB) with parapet, under breaking wave conditions. The SWB is made up of a seaward storm wall (may be a double shifted rows) , a sloping promenade (basin) and a landward storm wall. The seaward storm wall is partially permeable to allow the evacuation of the water in the basin.
URI
https://hdl.handle.net/11511/74353
https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/8775
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Seismic behavior of reinforced autoclaved aerated concrete wall panels
TAGHIPOUR, ARMIN; Canbay, Erdem; Binici, Barış; ALDEMİR, ALPER; Uzgan, Ugur; ERYURTLU, ZAFER (2018-09-01)
Vertical reinforced autoclaved aerated concrete (AAC) panel systems are among attractive alternatives for low‐rise buildings. The popularity of AAC panels in building construction is increasing due to their unique material properties, such as being light weight, good insulator, fire resistant combined with having high speed of erection and ease of quality control. However, past experimental evidence on the seismic response of reinforced vertical panels is rather limited with few tests on multi‐panel specime...
Seismic behavior of autoclaved aerated concrete low rise buildings with reinforced wall panels
Gökmen, Furkan; Binici, Barış; Canbay, Erdem (Springer Science and Business Media LLC, 2019-07-01)
Reinforced Autoclaved Aerated Concrete (AAC) wall panels are more commonly used to construct load-bearing walls in low-rise prefabricated buildings located in seismic zones. In the scope of this study, the seismic response of buildings constructed with reinforced AAC wall panels was investigated. To this end, an in situ test was conducted on a two-story test building under reversed cyclic displacement excursions. It was determined that the test building could carry a lateral load of 60% more than its weight...
Numerical and Experimental Investigation of Aerodynamic Loads for Tall Buildings with Prismatic and Twisted Forms
Orbay Akcengiz, Ezgi; Sezer Uzol, Nilay; Ostovan, Yasar; Ay, Bekir Özer (null; 2017-04-21)
Cantilevered from the ground, tall buildings reaching exceptional heights are inevitably exposed to severe lateral effects, particularly wind loads. As the structures get higher, slenderer and have larger strength-to-weight ratios, their design, both structural and architectural, is principally based on wind rather than gravity or seismic demands. Wind forces acting on this type of structures primarily depends on wind characteristics and the building form. Thus, creating distinctive forms that attract publi...
Seismic retrofit of buildings with backbone dampers
Shaban, Nefize; Ozdemir, Seda; Caner, Alp; Akyüz, Uğurhan (2017-01-01)
Dampers have been effectively used in new designs and seismic retrofit of old structures in many parts of the world. The common seismic retrofit practice in Turkey is almost purely based on stiffening the structure with additional shear walls or adding braces to limit the excessive seismic drifts. Such an approach usually results in expensive interior works and enlargements of foundations. The stiffening of the structure typically results in attracting more seismic force. Utilization of dampers as seismic p...
Tensioned fabric shape-finding
Caner, Alp (1999-09-01)
Tensioned glass fiber-reinforced fabric has been used in roofs and canopies for various permanent structures such as stadiums and airport terminals all around the world. At its final state of geometry, the fabric shall be all in tension in its natural stable shape. The natural shape of the fabric can be generated by refining a 2D computer model to determine the 3D state using a geometric nonlinear analysis program for the personal computer. This paper presents an actual design case using a general purpose s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Kısacık, G. Özyurt Tarakcıoğlu, C. Baykal, and G. Kaboğlu, “Vertical Seawall Crest Modifications for Overtopping,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74353.