Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
PCL-Fibrin Scaffolds for Tissue Engineering
Date
2017-05-14
Author
Malikmammadov, Elbay
Endoğan Tanır, Tuğba
Kızıltay, Aysel
Hasırcı, Vasıf Nejat
Hasırcı, Nesrin
Metadata
Show full item record
Item Usage Stats
202
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/74984
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
PCL-Fibrin scaffolds for bone tissue engineering applications
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2017-05-12)
PCL based Bilayer Scaffolds for Dental Tissue Engineering
Düzenli, İpek; Kızıltay, Aysel; Endoğan Tanır, Tuğba; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (null; 2015-10-22)
PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-01-01)
Scaffolds produced for tissue engineering applications are proven to be promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, porous and fibrous poly(epsilon-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of tricalcium phosphate (TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial ...
PCL Wet Spun Scaffolds for Antibiotic Delivery
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Nesrin (null; 2015-07-08)
PCL and PCL-based materials in biomedical applications
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-01-01)
Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(epsilon-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical co...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Malikmammadov, T. Endoğan Tanır, A. Kızıltay, V. N. Hasırcı, and N. Hasırcı, “PCL-Fibrin Scaffolds for Tissue Engineering,” 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74984.