Inverse design of compressor cascades

2001-12-01
Kaplan, B.
Eyi, Sinan
In this paper an inverse design method is presented which couples a Navier-Stokes flow solver and a numerical optimization algorithm. The design method generates a compressor cascade, producing a specified surface pressure distribution at a transonic speed. A least-square optimization technique is used to minimize pressure discrepancies between the target and designed cascades. In order to represent the nonlinear, rotational and viscous physics of transonic flows, Navier-Stokes equations are used to predict the flow field. Sensitivity derivatives are obtained using finite differencing. Effects of different design variables on the performance of design optimization are evaluated. Sensitivities are calculated on parallel processors to reduce the computational cost. © 2000 The American Institute of Aeronautics and Astronautics Inc. All rights reserved.

Suggestions

Optimising a nonlinear utility function in multi-objective integer programming
Ozlen, Melih; Azizoğlu, Meral; Burton, Benjamin A. (2013-05-01)
In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective i...
Implicit monolithic parallel solution algorithm for seismic analysis of dam-reservoir systems
Özmen, Semih; Kurç, Özgür; Department of Civil Engineering (2016)
This research mainly focuses on developing a computationally scalable and efficient solution algorithm that can handle linear dynamic analysis of dam-reservoir interaction problem. Lagrangian fluid finite elements are utilized and compressibility and viscosity of the fluid are taken into consideration during the reservoir modeling. In order to provide computational scalability and efficiency, domain decomposition methods implemented with parallel computing approaches such as Finite Element Tearing and Inter...
Numerical methods for multiphysics flow problems
Belenli Akbaş, Mine; Kaya Merdan, Songül; Rebholz, Leo G.; Department of Mathematics (2016)
In this dissertation, efficient and reliable numerical algorithms for approximating solutions of multiphysics flow problems are investigated by using numerical methods. The interaction of multiple physical processes makes the systems complex, and two fundamental difficulties arise when attempting to obtain numerical solutions of these problems: the need for algorithms that reduce the problems into smaller pieces in a stable and accurate way and for large (sometimes intractable) amount of computational resou...
Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm
DEĞERTEKİN, SADIK ÖZGÜR; Saka, M. P.; HAYALİOĞLU, MEHMET SEDAT (Elsevier BV, 2008-01-01)
In this paper, algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search and genetic algorithm. Tabu search utilizes the features of short-term memory facility (tabu list) and aspiration criteria. Genetic algorithm employs reproduction, crossover and mutation operators. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange...
Inverse Sturm-Liouville Systems over the whole Real Line
Altundağ, Hüseyin; Taşeli, Hasan; Department of Mathematics (2010)
In this thesis we present a numerical algorithm to solve the singular Inverse Sturm-Liouville problems with symmetric potential functions. The singularity, which comes from the unbounded domain of the problem, is treated by considering the limiting case of the associated problem on the symmetric finite interval. In contrast to regular problems which are considered on a finite interval the singular inverse problem has an ill-conditioned structure despite of the limiting treatment. We use the regularization t...
Citation Formats
B. Kaplan and S. Eyi, “Inverse design of compressor cascades,” 2001, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84897841900&origin=inward.