Otonom Quadrotor Sürüleri için Orantısal Navigasyon Tabanlı Merkezi Olmayan Toplu Hareket Algoritması

2017-09-23
Altintas, Oguz Han
Marangalou, Kourosh
Turgut, Ali Emre
Bu bildiride orantısal navigasyon yaklaşımlarının yeni bir yöntem olarak otonom ve merkezi olmayan multikopter robotların kontrolüne nasıl uygulanabileceği anlatılmaktadır. Burada merkezi olmayan ile kastedilen her bir sürü bireyinin yakınındaki diğer bireylerden edindiği bilgi doğrultusunda bağımsız olarak hareket edebilmesidir. Çalışmada iki farklı iletişim prosedürü kullanılmış olup bunlar eşler arası etkileşim ve odaklanmış etkileşim olarak tanımlanmıştır. Eşler arası etkileşimde her birey en yakınındakine güdümlenirken odaklanmış etkileşimde ise yayını alan diğer bireylerin ortalama konumuna güdümlenmiştir. Buna ek olarak basit bir itme-çekme modeli kullanılarak da bireylerin çarpışma ve saçılma durumları önlenmiştir. Yaklaşım çeşitli sayıda üyelerden oluşan sürü grupları ve sinyal-gürültü oranları altında üyeleri bir araya toplayıp hizalayarak, toplu şekilde hareketi ve bir arada kalmayı başarılı bir şekilde sağlamıştır.
TOK 2017 ( 21-23 Eylül 2017)

Suggestions

Trajectory planning and tracking for autonomous vehicles
Çiçek, Haluk Levent; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2022-12-27)
Finding appropriate paths is an essential issue for the development of autonomous vehicles and robots. Hereby, it has to be considered that autonomous vehicles cannot follow sharp corners, as they cannot turn on a single point. Therefore, it is important to compute smooth paths that have additional desirable properties such as minimum length and sufficient distance from obstacles. Furthermore, practical applications require the computation of such paths in real time. This thesis develops a general method...
An algorithm to resolve the optimal locomotion problem of modular robots
Mencek, Hakan; Soylu, Reşit; Department of Mechanical Engineering (2007)
In this study, a novel optimal motion planning algorithm is developed for the locomotion of modular robots. The total energy consumption of the robot is considered to be the optimization criteria. In order to determine the energy consumption of the system, the kinematic and dynamic analyses of the system are performed. Due to the variable number of modules in the system, a recursive formulation is developed for both kinematic and dynamic analyses. Coulomb's static and dynamic friction models are used to mod...
Human aware navigation of a mobile robot in crowded dynamic environments
Hacınecipoğlu, Akif; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2019)
As mobile robots start operating in dynamic environments crowded with humans, human-aware and human-like navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People can navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear path leading to it. This is clearly a dexterity of humans. But the mobile robots which have to navigate in such environments lack this feature. Even perf...
Modelling, simulation and testing of artificial neural network augmented kalman filter for INS/GPS and magnetometer integration
Yıldız, Doğan; Konukseven, Erhan İlhan; Nalbantoğlu, Volkan; Department of Mechanical Engineering (2016)
The objective of this thesis is to investigate a hybrid Artificial Intelligence/ Kalman Filter (AI/KF) system to determine 3D attitude, velocity and position of a vehicle in challenging GPS environment. In navigation problem, the aim is to determine the position and velocity of the host vehicle from initial conditions. By using Inertial Measurement Unit (IMU), it is possible to calculate position and velocity with an error. In other words, during the integration stage of the IMU measurement, errors will be ...
A fluid dynamics framework for control of mobile robot networks
Paç, Muhammed Raşid; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2007)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and a...
Citation Formats
O. H. Altintas, K. Marangalou, and A. E. Turgut, “Otonom Quadrotor Sürüleri için Orantısal Navigasyon Tabanlı Merkezi Olmayan Toplu Hareket Algoritması,” 2017, p. 697, Accessed: 00, 2021. [Online]. Available: http://www.tok2017.yildiz.edu.tr/docs/TOK-2017-Bildiriler-Kitabi.pdf?ver=8.0.