A Proton Irradiation Test Facility For Space Research In Ankara, Turkey

2018-07-15
Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

Suggestions

Design of a space radiation monitor for a spacecraft in leoand results from a prototype on the first Turkish sounding rocket
Albarodi, Abdulrahman; Demirköz, Melahat Bilge; Department of Physics (2021-2-03)
Radiation damage to spacecraft is a major reason for malfunctions in electronic components. Monitoring real-time radiation that the spacecraft is exposed to is of utmost importance for subsequent investigation of faults and their correlation to radiation doses. Components which have completed mission lifetime successfully in space and therefore have gained heritage can be certified to a certain level of radiation tolerance for future missions. The design and optimization of a space ...
Pretest Setup Installation of the METU-DBL Project to Perform Space Radiation Tests
Demirköz, Melahat Bilge; Gencer, Ayşenur; Milanese, Attilio; Yigitoglu, Merve; Şahin, İlker; Baslar, Gamze Kilicerkan; Aydın, Murat; Uslu, Pelin; Duran, Selcen Uzun; Veske, Doga; Uzel, Ramazan; Bodur, Baran (2017-06-22)
Satellites and spacecrafts are exposed to space radiation environment during their mission. This environment consists of cosmic rays, solar particles and trapped particles. Cosmic rays are coming fromthe outside of our solar system. Solar particles are produced by the Sun. These particles can be trapped around the Earth's magnetic field lines when they approach the Earth's atmosphere. These particles can affect performance and robustness of electronic components or materials used in space and such effects c...
Design of an irradiation test facility for space applications
Kızılören, Dilek; Demirköz, Melahat Bilge; Department of Physics (2014)
Space radiation damages electronic components of spacecraft. Damages are due to cosmic rays which consist of protons, photons, electrons, and heavy nuclei. Function- ality and performance of the electronic components in flight depend on the orbital pa- rameters of spacecrafts and exposure time. The space radiation causes three types of effects and these are categorized as Single Event Effects (SEEs), Total Ionizing Dose (TID) Effects and Non-Ionizing Dose Displacement Damage Effects. Radiation hard- ness ass...
THE TRANSITION RADIATION DETECTOR OF THE AMS-2 EXPERIMENT
Demirköz, Melahat Bilge (2002-11-01)
The AMS magnetic spectrometer will be installed on the International Space Station ISS to measure the properties of cosmic rays in the range of 1 to 1000 GeV during a mission of three years. A Transition Radiation Detector is used in combination with an electromagnetic calorimeter to reach a rejection of 10(-6) protons against positrons up to an energy of 300 GeV. This allows to search for cosmic cold dark matter through their decay products.
METU defocusing beamline project for the first SEE tests in Turkey and the test results from the METU-DBL preliminary setup
Demirköz, Melahat Bilge; Yigitoglu, M.; Aydin, S.; Efthymiopoulos, I (Elsevier BV, 2019-08-21)
Space radiation can affect performance of electronic components during a satellite's mission. In order to ensure reliable performance, these components must be tested under some types of radiation. Middle East Technical University-Defocusing Beam Line (METU-DBL) project aims to perform Single Event Effect (SEE) tests for space, HiLumi LHC, nuclear and other applications. ESA ESCC No. 25100 Standard Single Event Effect Test Method and Guidelines is considered for these SEE tests. Turkish Atomic Energy Author...
Citation Formats
M. B. Demirköz, “A Proton Irradiation Test Facility For Space Research In Ankara, Turkey,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76555.