Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Relativistic Burgers Models on Curved Background Geometries
Date
2019-01-01
Author
Okutmuştur, Baver
Metadata
Show full item record
Item Usage Stats
248
views
0
downloads
Cite This
Relativistic Burgers model and its generalization to various spacetime geometries are recently studied both theoretically and numerically. The numeric implementation is based on finite volume and finite difference approximation techniques designed for the corresponding model on the related geometry. In this work, we provide a summaryof several versions of these models on the Schwarzschild, de Sitter, Schwarzschild-de Sitter, FLRW and Reissner-Nordstr¨om spacetime geometries with their particular properties.
URI
https://link.springer.com/book/10.1007/978-3-030-11539-5
https://hdl.handle.net/11511/76818
Relation
Finite Difference Methods. Theory and Applications
Collections
Department of Mathematics and Science Education, Book / Book chapter
Suggestions
OpenMETU
Core
Finite volume method for the relativistic burgers model on a (1+1)-Dimensional de sitter spacetime
Ceylan, Tuba; Okutmuştur, Baver (2016-05-10)
Several generalizations of the relativistic models of Burgers equations have recently been established and developed on different spacetime geometries. In this work, we take into account the de Sitter spacetime geometry, introduce our relativistic model by a technique based on the vanishing pressure Euler equations of relativistic compressible fluids on a (1+1)-dimensional background and construct a second order Godunov type finite volume scheme to examine numerical experiments within an analysis of the cos...
Reisnerr-Nordstrom Spacetime Geometry: Derivation of the Euler and Burgers Models
Okutmuştur, Baver (2018-7-07)
A relativistic generalization of the Euler and Burgers models have recently been introduced and analyzed both theoretically and numerically. In this work we extend these analysis to a particular type of the Lorentzian manifold, so called the Reissnerr-Nordström (RS) spacetime geometry. We introduce basic properties of the R-S spacetime and its metric components containing electrical charge term which distinguish the R-S spacetime from the Schwarzshild geometry. Furthermore, we present a derivation of the Eu...
RELATIVISTIC DESCRIPTION OF HEAVY Q(Q)OVER-BAR BOUND-STATES
ZAKOUT, I; Sever, Ramazan (1994-10-01)
We study the relativistic description of heavy qqBAR bound states in the context of the relativistic wave equation. We used some attractive QCD based potentials where the vector part incorporates in the two loop perturbation QCD effects at short distances while the scalar part approaches the linear confining potential at large distances. We calculate the energy levels, leptonic and hadronic decay widths, as well as the E1 rate transition for ccBAR and bbBAR. Results are compared with their experimental v...
Entangled Harmonic Oscillators and Space-Time Entanglement
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E. (MDPI AG, 2016-6-28)
The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent p...
Derivation of the relativistic burgers equation on a de sitter background
Okutmuştur, Baver (null; 2014-12-17)
Recently several versions of relativistic Burgers equations have been derived on different spacetime geometries by the help of Lorentz invariance property and the Euler system of relativistic compressible flows on the related backgrounds. The concerning equations on Minkowski (flat) and Schwarzshild spacetimes are obtained in the article [6] where the finite volume approximations and numerical calculations of the given models are presented in detail. On the other hand a similar work on the Friedmann–Lemaˆıt...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Okutmuştur,
Relativistic Burgers Models on Curved Background Geometries
. 2019, p. 377.