Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Seismic Behaviour of RC Frames Infilled with Different Techniques
Date
2017-01-09
Author
Demirel, İsmail Ozan
Yakut, Ahmet
Binici, Barış
Metadata
Show full item record
Item Usage Stats
194
views
0
downloads
Cite This
Besides their primary implementation as heat isolation and partitioning off the living space, infill walls have great potential to influence building response during seismic excitation. Affecting the infilled RC building stock of Turkey, Mw 7.4 Kocaeli (1999) and Mw=7.1 Van (2011) earthquakes have shown that “non-structural” infill walls might be very critical for vertical stability of buildings under severe earthquakes and their performance is important in determination of global building performance especially under moderate earthquakes. In order to better understand infilled frame response, to determine performance levels for the infill walls and to enhance seismic resistance via new materials and various infill wall construction techniques; cyclic tests on 8 half scale, single RC frames were conducted in METU Structural Mechanics Laboratories. Namely, bare frame (B), infilled frame (I), infilled frame with plaster (P), infilled frame with steel mesh reinforced plaster (MRP) locking brick infilled frame with horizontal slip layer (LB), infilled frame separated with horizontal steel plates (HSP), auto aerated concrete infilled frame (AAC), AAC infilled frame with fiberglass mesh reinforced plaster (AACP) were tested. Investigation and comparison of damage patterns, performances and contributions of infill walls to global response are presented.
Subject Keywords
İnfill wall
,
Reinforced concrete frame
,
Cyclic test
,
Performance limit states
URI
https://hdl.handle.net/11511/76849
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Seismic Strengthening with Precast Concrete Panels - Theoretical Approach
Baran, Mehmet; Canbay, Erdem; Tankut, Tugrul (2010-01-01)
An economical, structurally effective and practically applicable seismic retrofitting technique has been developed on the basis of the principle of strengthening the existing hollow brick infill walls by using high strength precast concrete panels. The technique would not require evacuation of the building and would be applicable without causing much disturbance to the occupant. For this purpose, a total of eighteen reinforced concrete frames with hollow brick infill walls were tested under reversed cyclic ...
Stress Scaling Factors for Seismic Soil Liquefaction Engineering Problems: A Performance-Based Approach
Çetin, Kemal Önder; Bilge, Habib Tolga (2013-06-19)
Most of the widely used seismic soil liquefaction triggering methods propose cyclic resistance ratio (CRR) values valid at the reference normal effective stress (sigma(v,0)') of one atmosphere and zero static shear stress (tau(st,0)) states. Then, a series of correction factors are applied on this reference CRR, for the purpose of assessing the variability due to normal effective and static shear stress states (i.e. K-sigma and K-alpha corrections) acting on the horizontal plane. In the literature, a number...
A comparative structural and architectural analysis of earthquake resistant design principles applied in reinforced concrete residential buildings in Turkey
Özmen, Cengiz; Ünay, Ali İhsan; Department of Building Science in Architecture (2008)
The aim of this thesis is to demonstrate that it is possible to design earthquake resistant residential structures without significant compromises in the spatial quality and economic viability of the building. The specific type of structural system that this thesis focuses on is the reinforced concrete skeleton system. The parametric examples and key studies that are used in this research are chosen among applied projects in the city of Bolu. This city is chosen due to its location on the North Anatolian Fa...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Seismic Performance Assessment of Masonry Buildings Using In Situ Material Properties
Cobanoglu, Baran; ALDEMİR, ALPER; Demirel, Ismail Ozan; Binici, Barış; Canbay, Erdem; Yakut, Ahmet (American Society of Civil Engineers (ASCE), 2017-08-01)
Seismic performance assessment of existing buildings requires the existing material's properties to be determined as this has a significant influence on the seismic risk. As one of the most common construction type in Turkey, masonry buildings are assessed generally based on the recommended material properties specified in relevant codes as opposed to testing of samples taken from the existing buildings. However, due to different material types and workmanship quality, the specified properties might be quit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. O. Demirel, A. Yakut, and B. Binici, “Seismic Behaviour of RC Frames Infilled with Different Techniques,” 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76849.