Tsunami Induced Sedimentation in Ports A Case Study in Haydarpasa Harbor Marmara Sea

2015-12-14
Kıan, Rozıta
Velioğlu, Deniz
Yalçıner, Ahmet Cevdet
Zaytsev, Andrey
The movement of sea bottom or ground sediment material by tsunami cause erosion, deposition and hence bathymetry and topogrphy changes. The unexpected depth decrease at some parts of the enclosed basins and harbors may result in lack of movements of vessels. In order to understand the sediment movement inside the enclosed basins, Haydarpasa port in the sea of Marama is selected as a case study to understand the motion of tsunamis inside the port and identify their effects on harbor functions. The highest populated mega city Istanbul, located at north coast of the Sea of Marmara is one of the main centers of major economic activities in the region. In the study, the spatial and temporal changes of main tsunami parameters are investigated and their adverse effects on harbor performance are identified by analyzing the critical tsunami parameters (water elevation, current speed and momentum fluxes) in the port. Furthermore, the morphological changes due to tsunami induced flows are also considered. The morphological changes due to tsunamis can be governed by bathymetry and topography, tsunami current and the characteristics of ground material. Rouse number is one of the indicators to describe the initiation of sediment motion and transport modes under the flow. Therefore the morphological changes can be monitored by monitoring the change of the Rouse number. In this study the spatial and temporal change of Rouse number and hence modes of sediment transport in Haydarpasa port during a tsunami is investigated. Finally the functional loss of the port and the necessary strategies for reduction of tsunami impact and increase of resilience are also discussed. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).
AMERICAN GOPHYSICAL UNION 2015 FALL MEETING (14 - 18 Aralık 2015)

Suggestions

TSUNAMI MAXIMUM RUNUP AND FOCUSING THROUGH EARTHQUAKE SOURCE PARAMETERS
Sharghivand, Naeimeh; Aşık, Mehmet Zülfü; Department of Engineering Sciences (2022-8-11)
In this study, the N-wave profile is fitted to the seafloor deformation for a large set of earthquake scenarios, i.e., assuming that the seafloor deformation resulting from an earthquake instantaneously transfers to the sea surface. Hence, the N-wave parameters are identified with respect to the earthquake source parameters allowing to express the initial tsunami profile in terms of the earthquake source parameters. Then, the maximum tsunami runup is presented through the earthquake fault plane parameters u...
Tsunami induced scour around a monopile foundation
Fuhrman, David R; Larsen, Bjarke E; Baykal, Cüneyt; Sumer, B Mutlu (null; 2016-11-20)
While the run-up, inundation, and destructive potential of tsunami events has received considerable attention in the literature, the associated interaction with the sea bed i.e. boundary layer dynamics, induced sediment transport, and resultant sea bed morphology, has received relatively little specific attention. The present paper aims to further the understanding of tsunami-induced scour, by numerically investigating tsunami-induced flow and scour processes around a monopile structure, representative of t...
Earthquake imprints on a lacustrine deltaic system: Example of the Kürk Delta along the East Anatolian Fault (Turkey)
Hubert-ferrari, Aurelia; El Ouahabi, Meriam; Garcia Moreno, David; Avşar, Ulaş; Altınok, Sevgi; Fagel, Nathalie; Çağatay, Namık (null; 2017-04-23)
Delta contains a sedimentary record primarily indicative of water level changes, but particularly sensitive to earthquake shaking, which results generally in soft-sediment-deformation structures. The Kürk Delta adjacent to a major strike-slip fault displays this type of deformation (Hempton and Dewey, 1983) as well as other types of earthquake fingerprints that are specifically investigated. This lacustrine delta stands at the southwestern extremity of the Hazar Lake and is bound by the East Anatolian Fault...
Earthquake imprints on a lacustrine deltaic system: The Kurk Delta along the East Anatolian Fault (Turkey)
Hubert-Ferrari, Aurelia; El-Ouahabi, Meriam; Garcia-Moreno, David; Avşar, Ulaş; Altinok, Sevgi; Schmidt, Sabine; Fagel, Nathalie; Cagatay, M. Namik (2017-08-01)
Deltas contain sedimentary records that are not only indicative of water-level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kurk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re-evaluates water-level changes and earthquake shaking that have affected the Kurk Delta, combinin...
Basement structure and architecture of the Black Sea Basin
Kaymakcı, Nuretdin; Horn, Brian (null; 2018-01-28)
Black Sea consists of two separate back arc basins which opened at different times during the Cretaceous in response to northward subduction of the Neo-Tethys Ocean. The paucity of well data, complex geometries and seismic imaging challenges mean that questions remain regarding the basement architecture though most authors accept that, at least in part, both these basins are floored by oceanic crust, even though there are no magnetic stripes. Interpretation of deep, long offset seismic data (imaging to more...
Citation Formats
R. Kıan, D. Velioğlu, A. C. Yalçıner, and A. Zaytsev, “Tsunami Induced Sedimentation in Ports A Case Study in Haydarpasa Harbor Marmara Sea,” presented at the AMERICAN GOPHYSICAL UNION 2015 FALL MEETING (14 - 18 Aralık 2015), San Francisco, USA, 2015, Accessed: 00, 2021. [Online]. Available: http://fallmeeting.agu.org/2015/virtual-options/.