Kazıklı Temellerin Dinamik Davranışı: Deneysel Araştırmalar ve Mevcut Pratik

2019-10-11
Structural modelling and analysis of a superstructure under dynamic loadings becomes a complex problem if the soil and the foundation effects are included in the model. The use of the dynamic impedance functions, a common practice for representation of the soil and foundation systems, is being replaced by the use of more detailed structural models and elaborate constitutive relations determined to yield better prediction of the demands on the structures having pile-foundations. Constitution of the complete model of a soil-pile-structure system is a rigorous task, requiring a comprehensive understanding on the complex behavior of the soil-pile-structure system. The complexity of the soil-pile interaction under dynamic loadings arises from various features like material nonlinearities of soil and structural elements, the degradation or hardening in the soil strength and stiffness, pile group effects, etc. Experimental studies on the behavior of pile foundation systems is very important in this regard as they determine both the development of constitutive models for use in prediction studies as well as the nature of the methods for the evaluation of the pile-structure system. The goal of this study is to outline the current state of the art of the prediction of the response of pile-structure-foundation systems. With this in mind, first, the experimental studies on prediction of pile behavior are summarized and evaluated. Then, the practical approach to the modeling of piles in the design codes and guidelines, as derived from these studies, are summarized. The relationship between the experimental studies and the design guidelines, which form the basic backbone of engineering assumptions in design and evaluation of these systems, is outlined. Finally, the requirements in the current modeling environment for more elaborate structure-pile-foundation models are presented.

Suggestions

An integrated seismic hazard framework for liquefaction triggering assessment of earthfill dams' foundation soils
Ünsal Oral, Sevinç; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Within the confines of this study, seismic soil liquefaction triggering potential of a dam foundation is assessed within an integrated probabilistic seismic hazard assessment framework. More specifically, the scheme presented hereby directly integrates effective stress-based seismic soil liquefaction triggering assessment with seismic hazard analysis framework, supported by an illustrative case. The proposed methodology successively, i) processes the discrete stages of probabilistic seismic hazard workflow ...
An assessment of Winkler model for simulation of shallow foundation uplift
Taymuş, Refik Burak; Yılmaz, Mustafa Tolga; Department of Engineering Sciences (2008)
Foundation uplift is the partial separation of a shallow foundation from soil due to excessive load eccentricity. Foundation uplift can significantly change the seismic response of slender structures, and frames as well. In literature, different support models for foundations are employed in order to simulate foundation uplift in seismic analysis of structures. One of the most widely used models is the Winkler model which assumes distributed tensionless springs beneath a shallow foundation. In this study, t...
Finite element implementation of a model to estimate the permanent strain of cyclically-loaded soil
Babaoğlu, Muhittin; Erdoğan, Sinan Turhan; Department of Civil Engineering (2020)
In vast majority of geotechnical structures such as monopile or strip foundation, which are subjected to repeated loading, long-term resilience of the structures is directly related with the behavior of granular materials subjected to cyclic loading. Repeatedly loaded structure distributes stress to soil that surrounds the structure. When granular materials are exposed to cyclic loading, plastic strain occurs despite the applied stress is less than plastic yield, which results to residual settlement. This t...
The effect of basin edge slope on the dynamic response of soil deposits
Cılız, Serap; Özkan, M. Yener; Department of Civil Engineering (2007)
The effects of basin edge slope on the dynamic response of soil deposits are assessed by using one-dimensional and two-dimensional numerical analyses. 24 basin models having trapezoidal cross section are generated to represent different geometries (basin depth, basin edge slope) and soil type. Harmonic base motions with different predominant periods (Tp) are used in the analyses. The results indicate that, for a constant basin edge slope and a constant ratio of fundamental period of site to the predominant ...
A comparison of two dimensional and three dimensional finite element analysis for settlement behavior of piled raft foundations
Kaltakcı, Volkan; Özkan, M. Yener; Department of Civil Engineering (2009)
In this study, the settlement behavior of the piled raft foundations resting on overconsolidated clays under uniform loading, is investigated for different pile configurations and load levels. A total of 100 plane strain and three dimensional finite element analyses are carried out and the results of these analyses are compared both with each other and with the results presented by Reul & Randolph (2004). The material parameters used in the analysis are selected mainly referring to the previous studies ci...
Citation Formats
M. Özgenoğlu and Y. Arıcı, “Kazıklı Temellerin Dinamik Davranışı: Deneysel Araştırmalar ve Mevcut Pratik,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/78969.