Modeling of reaction mechanisms in lithium-sulfur batteries

2018-09-02
Erişen, Nisa
Külah, Görkem
Eroğlu Pala, Damla

Suggestions

Modeling of reaction and degradation mechanisms in lithium-sulfur batteries
Erişen, Nisa; Külah, Görkem; Department of Chemical Engineering (2019)
Lithium-sulfur batteries are promising alternatives for the energy storage systems beyond Li-ion batteries due to their high theoretical specific energy (2567 Wh/kg) in addition to the natural abundancy, non-toxicity and low cost of sulfur. The reaction and degradation mechanisms in a Li-S battery include various electrochemical and precipitation/dissolution reactions of sulfur and polysulfides; however, the exact mechanism is still unclear. In this study, the effect of critical cathode design parameters su...
MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS
Ekiz, Ahmet; Camci, Talha; Turkmen, Ibrahim; SANKIR, MEHMET; USLU, SITKI; Baker, Derek Keıth; Agar, Ertan (2011-09-01)
Fuel cell technology is one of the most economic and efficient ways to utilize hydrogen energy. Various types of fuel cells are present regarding the fuel type and amount of power produced. Among these, proton exchange membrane fuel cells (PEMFCs) are very promising. In this work, a 2D proton exchange membrane fuel cell unit cell was modeled using Comsol Multiphysics software. Cell section was taken parallel to flow direction. Obstacles with various geometries were placed in the flow channel in order to for...
Modeling of heat and mass transfer in microwave-infrared heating of zucchini
Yazıcıoğlu, Nalan; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2016)
The main objective of this study is to develop a finite element model to predict the variation of temperature and moisture content of zucchini during microwave-infrared heating. There is no information in literature about heating of zucchini by using this method. Heat and mass transfer in zucchini heated in microwave and infrared combination oven were modelled by Finite Element method. Microwave power was predicted by using the exact form of Lambert Law and calculating the electric field distribution by Max...
Modeling of the nonlinear behavior of steel framed structures with semi rigid connections
Sarıtaş, Afşin; Özel, Halil Fırat (null; 2015-07-21)
A mixed formulation frame finite element with internal semi-rigid connections is presented for the nonlinear analysis of steel structures. Proposed element provides accurate responses for spread of inelasticity along element length by monitoring the nonlinear responses of several crosssections, where spread of inelasticity over each section is captured with fiber discretization. Each material point on the section considers inelastic coupling between normal stress and shear stress. The formulation of the ele...
Modeling of ground-borne vibration from underground railway systems
Albayrak, Ahmet; Çalışkan, Mehmet; Department of Mechanical Engineering (2012)
Ground-borne vibrations from railway systems not only pose threats to structural integrity of nearby buildings and cause annoyance on people but also contribute into environmental noise levels. It is of utmost importance to predict these vibrations at the design stage of such systems. This thesis attempts to reach this goal through finite elements analysis. Commercial software is used to develop a finite element model of an existing railway system. The model is based on the work of Forrest and Hunt [11]. It...
Citation Formats
N. Erişen, G. Külah, and D. Eroğlu Pala, “Modeling of reaction mechanisms in lithium-sulfur batteries,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79064.