PREDICTION OF SEISMIC ENERGY DISSIPATION IN SDOF SYSTEMS

1995-11-01
Nurtuğ, Alphan
Sucuoğlu, Haluk
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo‐velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio when the SDOF system undergoes inelastic response. Accordingly, the proposed relationship can be employed in an energy‐based seismic design procedure for determining the required energy dissipation capacity of a structural system.
Earthquake Engineering Dynamics

Suggestions

PREDICTION OF SEISMIC ENERGY-DISSIPATION IN SDOF SYSTEMS
NURTUG, A; Sucuoğlu, Haluk (Wiley, 1995-09-01)
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio w...
Analysis of single phase convective heat transfer in microtubes and microchannels
Çetin, Barbaros; Yüncü, Hafit; Department of Mechanical Engineering (2005)
Heat transfer analysis of two-dimensional, incompressible, constant property, hydrodynamically developed, thermally developing, single phase laminar flow in microtubes and microchannels between parallel plates with negligible axial conduction is performed for constant wall temperature and constant wall heat flux thermal boundary conditions for slip flow regime. Fully developed velocity profile is determined analytically, and energy equation is solved by using finite difference method for both of the geometr...
Measurement of the inelastic cross section in proton-lead collisions at root s(NN)=5.02 TeV
Khachatryan, V.; et. al. (Elsevier BV, 2016-08-01)
The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. The data sample, corresponding to an integrated luminosity of L = 12.6 +/- 0.4 nb(-1), has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < eta < 5 and/or -5 < eta < -3, corre...
Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV
Chatrchyan, S.; et. al. (2011-09-01)
A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range vertical bar eta vertical bar < 2.5 and the transverse energy range 25 < E-T < 400 GeV, corresponding to the kinematic region 0.007 < x(T) < 0.114. Photon candidates are id...
Simulation of dissolution of silicon in an indium solution by spectral methods
Coskun, AU; Yener, Y; Arinc, F (IOP Publishing, 2002-09-01)
The results of a numerical simulation of natural convection due to concentration gradients during dissolution of silicon in an indium solution in a horizontal substrate-solution-substrate system are presented. The Chebyshev-Tau spectral method has been used for the simulations. The results are in very good agreement with the experimental data available in the literature. It is concluded that the discrepancies in the dissolution depths between the previous simulations and experimental data, especially at the...
Citation Formats
A. Nurtuğ and H. Sucuoğlu, “PREDICTION OF SEISMIC ENERGY DISSIPATION IN SDOF SYSTEMS,” Earthquake Engineering Dynamics, pp. 1215–1223, 1995, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79413.