Analysis of single phase convective heat transfer in microtubes and microchannels

Download
2005
Çetin, Barbaros
Heat transfer analysis of two-dimensional, incompressible, constant property, hydrodynamically developed, thermally developing, single phase laminar flow in microtubes and microchannels between parallel plates with negligible axial conduction is performed for constant wall temperature and constant wall heat flux thermal boundary conditions for slip flow regime. Fully developed velocity profile is determined analytically, and energy equation is solved by using finite difference method for both of the geometries. The rarefaction effect which is important for flow in low pressures or flow in microchannels is imposed to the boundary conditions of the momentum and energy equations. The viscous dissipation term which is important for high speed flows or flows in long pipelines is included in the energy equation. The effects of rarefaction and viscous heating on temperature profile and local Nusselt number are discussed. The results of the numerical method are verified with the well-known analytical results of the flow in macrochannels (i.e. Kn =0, Br =0) and with the available analytical results of flow in microchannels for simplified cases. The results show significant deviations from the flow in macrochannels.

Suggestions

Effect of surface roughness in microchannels on heat transfer
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2008)
In this study, effect of surface roughness on convective heat transfer and fluid flow in two dimensional parallel plate microchannels is analyzed by numerically. For this purpose, single-phase, developing, laminar fluid flow at steady state and in the slip flow regime is considered. The continuity, momentum, and energy equations for Newtonian fluids are solved numerically for constant wall temperature boundary condition. Slip velocity and temperature jump at wall boundaries are imposed to observe the rarefa...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Numerical simulation and analytical optimization of microchannel heat sinks
Türkakar, Göker; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2010)
This study has two main objectives: The performance evaluation of existing microchannel heat sinks using a CFD model, and the dimensional optimization of various heat sinks by minimizing the total thermal resistance. For the analyses, the geometric modeling is performed using the software GAMBIT while the thermal analysis is performed with FLUENT. The developed model compares very well with those available in the literature. Eight different metal-polymer microchannel heat sinks are analyzed using the model ...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Numerical and experimental investigation of forced filmwise condensation over bundle of tubes in the presence of noncondensable gases
Ramadan, Abdul-Ghani M; Yamalı, Cemil; Department of Mechanical Engineering (2006)
The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated numerically and experimentally. Liquid and vapor-air mixture boundary layers were solved by an implicit finite difference scheme. The effects of the free stream non-condensable gas (air) concentration, free stream velocity (Reynolds number), cylinder diameter, temperature difference and angle of inclination on the condensation heat transfer are analyze...
Citation Formats
B. Çetin, “Analysis of single phase convective heat transfer in microtubes and microchannels,” M.S. - Master of Science, Middle East Technical University, 2005.