Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multiple-Model Adaptive Estimation of Time-Varying Residual Magnetic Moment for Small Satellites
Date
2015-11-01
Author
Söken, Halil Ersin
Metadata
Show full item record
Item Usage Stats
165
views
0
downloads
Cite This
As the satellite size gets smaller, the residual magnetic moment (RMM) becomes the dominant attitude disturbance for the low Earth orbit satellites. Especially for advanced space missions such as astronomical observation, the RMM must be in-orbit estimated and compensated to increase the attitude pointing accuracy. Classical estimators can estimate the RMM terms accurately as long as the terms are constant. However, if there is unmodeled changes in the RMM parameters, as experienced for small satellite missions, then the estimations may deteriorate for a long time until the estimator catch the new values. In such cases the designer must sacrifice either the accuracy or the tracking capability of the estimator. In this paper, we propose a Multiple-Model Adaptive Estimation (MMAE) technique for the RMM estimation. By the use of a newly defined likelihood function both the steady state accuracy and tracking agility are secured for the estimator.
URI
https://link.springer.com/book/10.1007/978-3-319-17518-8#about
https://hdl.handle.net/11511/80009
Relation
Advances in Aerospace Guidance, Navigation and Control
Collections
Department of Aerospace Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
Investigation of Estimation Methods for Time-varying Residual Magnetic Moment
Söken, Halil Ersin (2015-01-01)
Generally, the dominant attitude disturbance source for the low Earth orbit small satellites is the residual magnetic moment (RMM). The RMM should be estimated and compensated in orbit to increase the attitude estimation and control accuracy. Although the estimator is usually built with the assumption that these parameters are constant, the RMM changes with sudden shifts caused by the variations in the onboard electrical current. The estimator should quickly track these unobserved parameters in case of chan...
SATELLITE ATTITUDE CONTROL USING DISSIMILAR REDUNDANT ACTUATORS
Kahraman, Ozgur; Tekinalp, Ozan (2009-02-12)
Low Earth orbit satellites are usually equipped with magnetic torquers for momentum dumping and reaction wheels to carry out three axis attitude stabilization and control. These two different types of actuators mixed and used together to carry out slew maneuvers. The problem of allocating the control to these different types of actuators is realized using a recently developed algorithm called blended inverse. The algorithm is compared with the Moore-Penrose pseudo inverse demonstrating its success in realiz...
Wideband Channel Estimation With a Generative Adversarial Network
Balevi, Eren; Andrews, Jeffrey G. (2021-05-01)
Communication at high carrier frequencies such as millimeter wave (mmWave) and terahertz (THz) requires channel estimation for very large bandwidths at low SNR. Hence, allocating an orthogonal pilot tone for each coherence bandwidth leads to excessive number of pilots. We leverage generative adversarial networks (GANs) to accurately estimate frequency selective channels with few pilots at low SNR. The proposed estimator first learns to produce channel samples from the true but unknown channel distribution v...
Two way split step parabolic equation algorithm for tropospheric propagation Tests and comparisons
ÖZGÜN, ÖZLEM; APAYDIN, GÖKHAN; Kuzuoğlu, Mustafa; SEVGİ, LEVENT (2010-08-25)
This paper introduces a two-way split-step parabolic equation propagation tool (2W-SSPE), which is capable of handling both forward and backward scattered waves during groundwave propagation over an irregular terrain, through inhomogeneous atmosphere. The algorithm is calibrated and tested against reference data obtained with the help of image method and the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD).
Influences of interplanetary magnetic field on the variability of aerospace media
Yapıcı, Tolga; Tulunay, Yurdanur; Department of Aerospace Engineering (2007)
The Interplanetary Magnetic Field (IMF) has a controlling effect on the Magnetosphere and Ionosphere. The objective in this work is to investigate the probable effects of IMF on Ionospheric and Geomagnetic response. To fulfill the objective the concept of an event has been created based on the polarity reversals and rate of change of the interplanetary magnetic field components, Bz and By. Superposed Epoch Method (SPE) was employed with the three event definitions, which are based on IMF Bz southward turnin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken,
Multiple-Model Adaptive Estimation of Time-Varying Residual Magnetic Moment for Small Satellites
. 2015, p. 321.