Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
SATELLITE ATTITUDE CONTROL USING DISSIMILAR REDUNDANT ACTUATORS
Date
2009-02-12
Author
Kahraman, Ozgur
Tekinalp, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
Low Earth orbit satellites are usually equipped with magnetic torquers for momentum dumping and reaction wheels to carry out three axis attitude stabilization and control. These two different types of actuators mixed and used together to carry out slew maneuvers. The problem of allocating the control to these different types of actuators is realized using a recently developed algorithm called blended inverse. The algorithm is compared with the Moore-Penrose pseudo inverse demonstrating its success in realizing the desired maneuver while overcoming singularities.
URI
https://hdl.handle.net/11511/53318
Conference Name
AAS/AIAA 19th Space Flight Mechanics Meeting
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Orbit Control of an Earth Orbiting Solar Sail Satellite
Polat, Halis Can; Tekinalp, Ozan (2022-09-01)
A concept for the utilization of solar sail satellite's propellant-free thrust capability at Low earth orbit (LEO) is proposed and its orbit control strategy is analyzed. Thrust vector control of the sail's normal direction is used to harvest the solar radiation pressure for generating the necessary acceleration to change the orbital elements. The required control vector direction is determined with two approaches. The first approach is realized by approximating the Gaussian Variational Equations at the emp...
Leo satellites : dynamic modelling, simulations and some nonlinear attitude control techniques
Karataş, Soner; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2006)
In this thesis nonlinear control method techniques are investigated to control the attitude of Low Earth Orbit satellites. Nonlinear control methods are compared with linear control methods. Simulations are done using Matlab and Simulink software and BILSAT-1 parameters are used in the simulations. Reaction wheels are used as the actuator.
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Choice of Pole Number of Two-Rotor Axial-Flux PM Motor for Control Moment Gyroscope
Özlü Ertan, Hatice Gülçin (2011-09-10)
Modern low earth orbit satellites use control moment gyroscopes (CMG) for maneuvering. GMC's generally use a brushless DC motor to run an inertial wheel at about 10000 rpm. In this paper axial-flux BLDC motor is considered for this task with a view to design a low volume, low weight CMC. Various axial-flux (AF) motor topologies are possible. However, two-rotor AF topology is found to be more advantageous. The specifications of an existing CMG design, based on a commercial BLDC motor are taken as reference. ...
ORBIT TRANSFER OF AN EARTH ORBITING SOLAR SAIL CUBESAT
Atas, Omer; Tekinalp, Ozan (2017-02-09)
Propelling a spacecraft by using solar radiation pressure is examined in the context of orbital maneuvers. A locally optimal steering law to progressively change number of selected orbital elements together is addressed. An Earth centered cubesat satellite with solar sail is used as an example. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for Earth orbiting satellites. The satellite attitude control is realized using to-go quaternio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Kahraman and O. Tekinalp, “SATELLITE ATTITUDE CONTROL USING DISSIMILAR REDUNDANT ACTUATORS,” Savannah, GA, 2009, vol. 134, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53318.