Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Gen ağlarının matematiksel modellemesi
Date
2017-01-01
Author
Purutçuoğlu Gazi, Vilda
Metadata
Show full item record
Item Usage Stats
68
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/80020
Journal
Biyoistatistik Dergisi-Türkiye Klinikleri
Collections
Unverified, Article
Suggestions
OpenMETU
Core
Gen Ağlarının Matematiksel Modellenmesi
Purutçuoğlu Gazi, Vilda (2017-01-01)
Modern mathematical methods in modeling and dynamics of regulatory systems of gene-environment networks
Defterli, Özlem; Kaya Merdan, Songül; Weber, Gerhard Wilhelm; Department of Mathematics (2011)
Inferring and anticipation of genetic networks based on experimental data and environmental measurements is a challenging research problem of mathematical modeling. In this thesis, we discuss gene-environment network models whose dynamics are represented by a class of time-continuous systems of ordinary differential equations containing unknown parameters to be optimized. Accordingly, time-discrete version of that model class is studied and improved by using different numerical methods. In this aspect, 3rd-...
Batch mode reinforcement learning for controlling gene regulatory networks and multi-model gene expression data enrichment framework
Şirin, Utku; Polat, Faruk; Department of Computer Engineering (2013)
Over the last decade, modeling and controlling gene regulation has received much attention. In this thesis, we have attempted to solve (i) controlling gene regulation systems and (ii) generating high quality artificial gene expression data problems. For controlling gene regulation systems, we have proposed three control solutions based on Batch Mode Reinforcement Learning (Batch RL) techniques. We have proposed one control solution for fully, and two control solutions for partially observable gene regulatio...
Efficient partially observable markov decision process based formulation of gene regulatory network control problem
Erdoğdu, Utku; Polat, Faruk; Alhajj, Reda; Department of Computer Engineering (2012)
The need to analyze and closely study the gene related mechanisms motivated the research on the modeling and control of gene regulatory networks (GRN). Di erent approaches exist to model GRNs; they are mostly simulated as mathematical models that represent relationships between genes. Though it turns into a more challenging problem, we argue that partial observability would be a more natural and realistic method for handling the control of GRNs. Partial observability is a fundamental aspect of the problem; ...
Analysis and prediction of gene expression patterns by dynamical systems, and by a combinatorial algorithm
Taştan, Mesut; Weber, Gerhard Wilhelm; Department of Scientific Computing (2005)
Modeling and prediction of gene-expression patterns has an important place in computational biology and bioinformatics. The measure of gene expression is determined from the genomic analysis at the mRNA level by means of microarray technologies. Thus, mRNA analysis informs us not only about genetic viewpoints of an organism but also about the dynamic changes in environment of that organism. Different mathematical methods have been developed for analyzing experimental data. In this study, we discuss the mode...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Purutçuoğlu Gazi, “Gen ağlarının matematiksel modellemesi,”
Biyoistatistik Dergisi-Türkiye Klinikleri
, pp. 143–155, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80020.