Introducing Water Budget Constraint To Improve Land Data Assimilation Performance

2011-05-24
A weak constraint is introduced in ensemble Kalman filters to reduce the water budget imbalance that occurs in land data assimilation. Two versions of the weakly constrained filter, called the weakly constrained ensemble Kalman filter (WCEnKF) and the weakly constrained ensemble transform Kalman filter (WCETKF), are proposed. The strength of the weak constraint is adaptive in the sense that it depends on the statistical characteristics of the forecast ensemble. The resulting filters are applied to assimilate synthetic observations generated by the Noah land surface model over the Red Arkansas River basin. The data assimilation experiments demonstrate that, for all tested scenarios, the constrained filters produce analyses with nearly the same accuracy as unconstrained filters, but with much smaller water balance residuals than un-constrained filters.
JCSDA 9th Workshop on Satellite Data Assimilation, 24 - 25 May 2011

Suggestions

Improving land data assimilation performance with a water budget constraint
Yılmaz, Mustafa Tuğrul; Houser, Paul R. (American Meteorological Society, 2011-10-01)
A weak constraint is introduced in ensemble Kalman filters to reduce the water budget imbalance that occurs in land data assimilation. Two versions of the weakly constrained filter, called the weakly constrained ensemble Kalman filter (WCEnKF) and the weakly constrained ensemble transform Kalman filter (WCETKF), are proposed. The strength of the weak constraint is adaptive in the sense that it depends on the statistical characteristics of the forecast ensemble. The resulting filters are applied to assimilat...
New initialization methods for discrete coefficient FIR filter design with coefficient scaling and the use of scale factor in the design process
Çiloğlu, Tolga (Institute of Electrical and Electronics Engineers (IEEE), 2006-02-01)
The initialization of filter coefficients in discrete-coefficient finite-impulse-response (FIR) filter design (with coefficient scaling) using coefficient-value-assignment-based optimization techniques is considered. A common weakness of existing initialization measures, a total-square-error (TSE) measure and a maximum-error (ME) measure, is described. New TSE and ME measures that overcome the weakness are introduced. As opposed to the current knowledge, it is revealed that TSE and ME measures do not necess...
Improved Wind Power Forecasting Using Combination Methods
KOKSOY, Ceyda Er; OZKAN, Mehmet Baris; BUHAN, Serkan; DEMIRCI, Turan; Arslan, Yusuf; Birtürk, Ayşe Nur; Karagöz, Pınar (2015-12-11)
Integration of the wind power into the existing transmission grid is an important issue due to discontinuous and volatile behavior of wind. Moreover, the power plant owners need reliable information about day-ahead power production for market operations. Therefore, wind power forecasting approaches have been gaining importance in renewable energy research area. The Wind Power Monitoring and Forecast System for Turkey (RITM) currently monitors a growing number of wind power plants in Turkey, and uses wind po...
A new boundary element formulation for wave load analysis
Yalcin, O. Fatih; Mengi, Yalcin (Springer Science and Business Media LLC, 2013-10-01)
A new boundary element (BEM) formulation is proposed for wave load analysis of submerged or floating bodies. The presented formulation, through establishing an impedance relation, permits the evaluation of the hydrodynamic coefficients (added mass and damping coefficients) and the coefficients of wave exciting forces systematically in terms of system matrices of BEM without solving any special problem, such as, unit velocity or unit excitation problem. It also eliminates the need for scattering analysis in ...
Development of high-resolution 72 h precipitation and hillslope flood maps over a tropical transboundary region by physically based numerical atmospheric-hydrologic modeling
Trinh, T.; Ho, C.; Do, N.; Ercan, Ali; Kawas, M. L. (2020-12-01)
Long-term, high spatial and temporal resolution atmospheric and hydrologic data are crucial for water resource management. However, reliable high-quality precipitation and hydrologic data are not available in various regions around the world. This is, in particular, the case in transboundary regions, which have no formal data sharing agreement among countries. This study introduces an approach to construct long-term high-resolution extreme 72 h precipitation and hillslope flood maps over a tropical transbou...
Citation Formats
M. T. Yılmaz and P. Houser, “Introducing Water Budget Constraint To Improve Land Data Assimilation Performance,” presented at the JCSDA 9th Workshop on Satellite Data Assimilation, 24 - 25 May 2011, 2011, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80069.