Energy Preserving Discretization of the Nonlinear Schödinger Equation by Interior Penalty Discontinuous Galerkin Method

2015-09-14

Suggestions

Energy preserving model order reduction of the nonlinear Schrodinger equation
Karasözen, Bülent (2018-12-01)
An energy preserving reduced order model is developed for two dimensional nonlinear Schrodinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orth...
Energy preserving methods for lattice equations
Erdem, Özge; Karasözen, Bülent (2010-11-27)
Integral preserving methods, like the averaged vector field, discrete gradient and trapezoidal methods are to Poisson systems. Numerical experiments on the Volterra equations and integrable discretization of the nonlinear Schrodinger equation are presented.
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasözen, Bülent (2013-12-01)
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to ex...
Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation
Sariaydin-Filibelioglu, Ayse; Karasözen, Bülent; Uzunca, Murat (2017-08-01)
An energy stable conservative method is developed for the Cahn-Hilliard (CH) equation with the degenerate mobility. The CH equation is discretized in space with the mass conserving symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting semi-discrete nonlinear system of ordinary differential equations are solved in time by the unconditionally energy stable average vector field (AVF) method. We prove that the AVF method preserves the energy decreasing property of the fully discretized ...
Energy Stable Discontinuous Galerkin Finite Element Method for the Allen-Cahn Equation
Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse; Yücel, Hamdullah (2018-05-01)
In this paper, we investigate numerical solution of Allen-Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen-Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical result...
Citation Formats
B. Karasözen, “Energy Preserving Discretization of the Nonlinear Schödinger Equation by Interior Penalty Discontinuous Galerkin Method,” 2015, Accessed: 00, 2021. [Online]. Available: http://enumath2015.iam.metu.edu.tr/bookOfAbstracts.pdf.