Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy preserving methods for lattice equations
Date
2010-11-27
Author
Erdem, Özge
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
269
views
0
downloads
Cite This
Integral preserving methods, like the averaged vector field, discrete gradient and trapezoidal methods are to Poisson systems. Numerical experiments on the Volterra equations and integrable discretization of the nonlinear Schrodinger equation are presented.
Subject Keywords
Poisson system
,
Energy preservation
,
Nonlinear Schrodinder eqwuation
URI
https://hdl.handle.net/11511/55680
DOI
https://doi.org/10.1063/1.3525179
Collections
Department of Basic English, Conference / Seminar
Suggestions
OpenMETU
Core
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasözen, Bülent (2013-12-01)
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to ex...
Hilbert functions of gorenstein monomial curves
Topaloğlu Mete, Pınar; Arslan, Sefa Feza; Department of Mathematics (2005)
The aim of this thesis is to study the Hilbert function of a one-dimensional Gorenstein local ring of embedding dimension four in the case of monomial curves. We show that the Hilbert function is non-decreasing for some families of Gorenstein monomial curves in affine 4-space. In order to prove this result, under some arithmetic assumptions on generators of the defining ideal, we determine the minimal generators of their tangent cones by using the standard basis and check the Cohen-Macaulayness of them. Lat...
Moving mesh discontinuous Galerkin methods for PDEs with traveling waves
UZUNCA, MURAT; Karasözen, Bülent; Kucukseyhan, T. (2017-01-01)
In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the effi...
Average Vector Field Splitting Method for Nonlinear Schrodinger Equation
Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02)
The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
SYMMETRIC SPACE PROPERTY AND AN INVERSE SCATTERING FORMULATION OF THE SAS EINSTEIN-MAXWELL FIELD-EQUATIONS
ERIS, A; GURSES, M; Karasu, Atalay (AIP Publishing, 1984-01-01)
We formulate stationary axially symmetric (SAS) Einstein–Maxwell fields in the framework of harmonic mappings of Riemannian manifolds and show that the configuration space of the fields is a symmetric space. This result enables us to embed the configuration space into an eight‐dimensional flat manifold and formulate SAS Einstein–Maxwell fields as a σ‐model. We then give, in a coordinate free way, a Belinskii–Zakharov type of an inverse scattering transform technique for the field equations supplemented by a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Erdem and B. Karasözen, “Energy preserving methods for lattice equations,” 2010, vol. 1309, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55680.