Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy preserving integration of bi-Hamiltonian partial differential equations
Date
2013-12-01
Author
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to examine the nonlinear dynamics after discretization.
Subject Keywords
Energy preservation
,
Bi-Hamiltonian systems
,
Poisson structure
,
Korteweg de vries equation
,
Dispersion
URI
https://hdl.handle.net/11511/30940
Journal
APPLIED MATHEMATICS LETTERS
DOI
https://doi.org/10.1016/j.aml.2013.06.005
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Energy preserving methods for lattice equations
Erdem, Özge; Karasözen, Bülent (2010-11-27)
Integral preserving methods, like the averaged vector field, discrete gradient and trapezoidal methods are to Poisson systems. Numerical experiments on the Volterra equations and integrable discretization of the nonlinear Schrodinger equation are presented.
Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes
İncegül Yücetürk, Cansu; Yolcu Okur, Yeliz; Hayfavi, Azize; Department of Financial Mathematics (2013)
Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called “Backward Stochastic Differential Equations in Finance” (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstl...
HIGHER-DERIVATIVE EFFECTIVE YANG-MILLS THEORY AND STATIC SPHERICALLY SYMMETRICAL FIELD CONFIGURATIONS
BASKAL, S; DERELI, T (IOP Publishing, 1993-04-01)
The variational field equations and the covariantly conserved energy-momentum tensor of a higher-derivative effective Yang-Mills theory are given. A class of static spherically symmetric gauge field configurations that follow from the Wu-Yang ansatz is considered.
Quantum mechanical computation of billiard systems with arbitrary shapes
Erhan, İnci; Taşeli, Hasan; Department of Mathematics (2003)
An expansion method for the stationary Schrodinger equation of a particle moving freely in an arbitrary axisymmeric three dimensional region defined by an analytic function is introduced. The region is transformed into the unit ball by means of coordinate substitution. As a result the Schrodinger equation is considerably changed. The wavefunction is expanded into a series of spherical harmonics, thus, reducing the transformed partial differential equation to an infinite system of coupled ordinary differenti...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karasözen, “Energy preserving integration of bi-Hamiltonian partial differential equations,”
APPLIED MATHEMATICS LETTERS
, pp. 1125–1133, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30940.