Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins in the Protein Interaction Network of Saccharomyces Cerevisiae
Date
2006-08-25
Author
Tunçbağ, Nurcan
Keskin Özkaya, Zehra Özlem
Metadata
Show full item record
Item Usage Stats
130
views
0
downloads
Cite This
Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.
URI
https://hdl.handle.net/11511/81387
https://publications.waset.org/4812/observation-of-the-correlations-between-pair-wise-interaction-and-functional-organization-of-the-proteins-in-the-protein-interaction-network-of-saccaromyces-cerevisiae
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Characterization and prediction of protein interfaces to infer protein-protein interaction networks
Keskin, Ozlem; Tunçbağ, Nurcan; GÜRSOY, Attila (2008-04-01)
Complex protein-protein interaction networks govern biological processes in cells. Protein interfaces are the sites where proteins physically interact. Identification and characterization of protein interfaces will lead to understanding how proteins interact with each other and how they are involved in protein-protein interaction networks. What makes a given interface bind to different proteins; how similar/different the interactions in proteins are some key questions to be answered. Enormous amount of prot...
Investigation of Multi-task Deep Neural Networks in Automated Protein Function Prediction
Rifaioğlu, Ahmet Süreyya; Martin, Maria Jesus; Atalay, Rengül; Atalay, Mehmet Volkan; Doğan, Tunca (2017-07-20)
Functional annotation of proteins is a crucial research field for understanding molecular mechanisms of living-beings and for biomedical purposes (e.g. identification of disease-causing functional changes in genes and for discovering novel drugs). Several Gene Ontology (GO) based protein function prediction methods have been proposed in the last decade to annotate proteins. However, considering the prediction performances of the proposed methods, it can be stated that there is still room for significant imp...
Integration of topological measures for eliminating non-specific interactions in protein interaction networks
BAYIR, Murat Ali; GUNEY, Tacettin Dogacan; Can, Tolga (Elsevier BV, 2009-05-28)
High-throughput protein interaction assays aim to provide a comprehensive list of interactions that govern the biological processes in a cell. These large-scale sets of interactions, represented as protein-protein interaction networks, are often analyzed by computational methods for detailed biological interpretation. However, as a result of the tradeoff between speed and accuracy, the interactions reported by high-throughput techniques occasionally include non-specific (i.e., false-positive) interactions. ...
INVESTIGATION OF THE PERMEABILITY OF THE CELL MEMBRANE FOR DIFFERENT CRYOPROTECTANT AGENTS IN A CONTINUOUS THERMO-FLUIDIC MICRO-CHANNEL SYSTEM
Hatiboğlu, Anıl; Külah, Haluk; Önel, Selis; Department of Micro and Nanotechnology (2021-9-13)
Modeling cell membrane permeability in different solutions is a critical requirement in controlling the response of cells during preconcentration processes in biotechnological applications, such as drug delivery, fluorescence imaging, and cryopreservation . Current multi-step methods employed in loading cells with high concentrations of cryoprotectant agents (CPAs) prior to cryopreservation for long term storage affect cell viability as a result of extended exposure times associated with these methods. One ...
Computational representation of protein sequences for homology detection and classification
Oğul, Hasan; Mumcuoğlu, Ünal Erkan; Department of Information Systems (2006)
Machine learning techniques have been widely used for classification problems in computational biology. They require that the input must be a collection of fixedlength feature vectors. Since proteins are of varying lengths, there is a need for a means of representing protein sequences by a fixed-number of features. This thesis introduces three novel methods for this purpose: n-peptide compositions with reduced alphabets, pairwise similarity scores by maximal unique matches, and pairwise similarity scores by...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Tunçbağ and Z. Ö. Keskin Özkaya, “Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins in the Protein Interaction Network of Saccharomyces Cerevisiae,” 2006, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/81387.