Stress strain behaviour of structural lightweight concrete under confinement

Şenel, Mehmet Ali
Tasbahjı, Tayseer
Turanlı, Lutfullah
Sarıtaş, Afşin
: In this study, stress-strain behavior of structural lightweight concrete is studied under unconfined and confined conditions. To this end, the use of naturally occurring perlite material as lightweight aggregate and cement replacement material is considered. Although there are several studies on the confinement effects on normal weight concrete, there is lack of data on the confinement behavior attained for structural lightweight concrete by spiral or stirrup reinforcement. In order to evaluate the performances of structural lightweight concrete and normal weight concrete in a reliable manner, an experimental study is conducted. Through the experimental study on cylinder specimens that are unconfined and confined in different percentages by spiral reinforcement, the elastic and inelastic, namely post-peak behavior of structural lightweight concrete is recorded by the use of displacementcontrolled testing machine. The results indicate that concrete produced from perlite as lightweight aggregate as well as through the use of cement replacement material provide significant energy absorption in the presence of spiral reinforcement


Nonlinear analysis of reinforced concrete frame structures
Çiftçi, Güçlü Koray; Polat, Mustafa Uğur; Department of Civil Engineering (2013)
Reinforced concrete frames display nonlinear behavior both due to its composite nature and the material properties of concrete itself. The yielding of the reinforcement, the non-uniform distribution of aggregates and the development of cracks under loading are the main reasons of nonlinearity. The stiffness of a frame element depends on the combination of the modulus of elasticity and the geometric properties of its section - area and the moment of inertia. In practice, the elastic modulus is assumed to be ...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Seismic Retrofit of Deficient RC Structures with Internal Steel Frames
ÖZÇELİK, RAMAZAN; Akpinar, Ugur; Binici, Barış (2011-12-01)
This paper describes an experimental study on internal steel frames (ISFs) to retrofit seismically deficient reinforced concrete (RC) frames. One reference and six strengthened frame specimens were tested under constant gravity load and cyclic lateral displacement excursions. Installation of the ISF with and without anchors to the RC frame was examined. Test results showed that the snug tight ISF installed inside an RC frame may suffice to realize the benefit of implementing ISFs. If the horizontal shear st...
Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry
Siddiqui, Umair A.; Sucuoğlu, Haluk; Yakut, Ahmet (2015-01-01)
This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic ...
Comparative evaluation of steel mesh, steel fiber and high performance polypropylene fiber-reinforced concrete in panel/beam tests
Ceylan, Semih; Turanlı, Lütfullah; Department of Civil Engineering (2014)
Comparison of concrete mixtures containing steel mesh, steel fiber and polypropylene fibers were evaluated in terms of toughness, flexural strength, compressive strength and split tensile strength. Five types of concrete were prepared with steel mesh, steel fiber and polypropylene fiber with the identical water/cement (w/c) ratio and the identical workability. 10x60x60 cm plates, 8x8x32 cm beams and 10x20 cm cylindrical concrete specimens were prepared. Compressive strength, split-tensile strength and tough...
Citation Formats
M. A. Şenel, T. Tasbahjı, L. Turanlı, and A. Sarıtaş, “Stress strain behaviour of structural lightweight concrete under confinement,” 2015, Accessed: 00, 2021. [Online]. Available: