Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evolution of seismically active İzmir-Balıkesir Transfer Zone: A reactivated and deep-seated structure since the Miocene
Date
2017-04-28
Author
Uzel, Bora
Sözbilir, Hasan
Kaymakcı, Nuretdin
Özkaymak, Çağlar
Özkaptan, Murat
Ay, Selin
Langereis, Cornellis G
Metadata
Show full item record
Item Usage Stats
150
views
0
downloads
Cite This
Within the Aegean extensional system, the İzmir-Balikesir Transfer Zone (İBTZ) is a recently recognized structure that have played important role in the late Cenozoic evolution of western Anatolia by accommodating the differential deformation between the Cycladic (CCC) and the Menderes (MCC) metamorphic core complexes. There is wealth of information about the transform nature of the zone during the late Cretaceous. Some of the faults within the İBTZ have earliest record of their activity in the late Cretaceous related to closure of the Neotethys. In this contribution we will present; (i) the vertical axis rotational history of western Anatolia using paleomagnetic data from the Miocene volcano-sedimentary rocks, (ii) kinematics of the major faults based on fault slip analysis of, and (iii) focal mechanism solutions of the recent seismic activity to better understand the İBTZ since the Miocene. Paleomagnetic results reveal two discrete and opposite major rotational phases since the early Miocene. Kinematics of structures agrees with these results while three major deformational phases are identified along the İBTZ. The focal mechanism solutions of recent seismic events -such as 1992 Doǧanbey, 2003 Seferihisar and 2005 Sıǧacık earthquakes- occurred along the İBTZ corroborate that it is still an active structure and transfers west Anatolian extensional strain into the Aegean Sea. Combining mantle tomography, paleomagnetic, kinematic, and seismic activity along the zone suggests that the İBTZ is not only links two core complexes, the MCC and the CCC, but also corresponds to a deep-seated structure related to a tear along the subducted northern edge of the African slab. Hence, it is not only a surface expression of a tear in the subducting African slab, but also one of the main seismic sources of the region. This work is supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) research grant of ÇAYDAǧ-109Y044 and partly by the Dokuz Eylül University Scientific Research (BAP) Project: 2007
URI
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-8190.pdf
https://hdl.handle.net/11511/81716
Conference Name
European Geosciences UnionGeneral Assembly 2017, Vienna, Avusturya, 23 - 28 Nisan 2017
Collections
Department of Geological Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex
UZEL, BORA; Langereis, Cornelis G.; Kaymakcı, Nuretdin; SÖZBİLİR, HASAN; ÖZKAYMAK, ÇAĞLAR; Ozkaptan, Murat (2015-03-15)
Within the Aegean extensional system, the izmir-Balikesir Transfer Zone (IBTZ) is a crucial element in the late Cenozoic evolution of western Anatolia since it accommodates the differential deformation between the Cycladic and the Menderes metamorphic core complexes. Here, we determine the rotational history of western Anatolia using new paleomagnetic data from 87 sites in Miocene volcano-sedimentary rocks to better understand the role of the IBTZ. Our results reveal two discrete and opposite major rotation...
Paleomagnetism of the Miocene Soma basin and its structural implications on the central sector of a crustal-scale transfer zone in western Anatolia (Turkey)
Westerweel, Jan; UZEL, BORA; Langereis, Cornelis G.; Kaymakcı, Nuretdin; SÖZBİLİR, HASAN (Elsevier BV, 2020-05-15)
The Izmir-Balikesir Transfer Zone (IBTZ) is a crustal-scale major tectonic feature in western Anatolia accommodating differential extension between the Menderes (MCC) and Cycladic (CCC) core complexes. The kinematics and evolution of the southern part of the IBTZ are well constrained, but its northern continuation remains unstudied. This part is crucial in understanding the complete evolution of western Anatolian tectonics, as well as a possible link between the IBTZ and North Anatolian Fault Zone (NAFZ). I...
Late Cretaceous volcanic arc magmatism in southeast Anatolian Orogenic Belt: Constraints from whole-rock, mineral chemistry, Sr-Nd isotopes and U-Pb zircon ages of the Baskil Intrusive Complex (Malatya, Turkey)
NURLU, NUSRET; Köksal, Serhat; Kohut, Milan (2022-08-01)
The voluminous intrusive and extrusive magmatism was formed in the Elazig-Malatya region of the Southeast Anatolian Orogenic Belt (SAOB) as a consequence of the continental collision and/or convergent orogeny. The SAOB holds a great number of stratigraphic, metamorphic and tectonomagmatic units in the Elazig-Malatya region that are crucial for recognition of the geodynamic setting of southeast Anatolia during the Upper Cretaceous. The Baskil Intrusive Complex (BIC) is composed of mainly tonalitic/granodiori...
Structure and Dynamics of the Eastern Mediterranean Upper Mantle Results from Shear wave Splitting and Seismic Tomography
Biryol, C. Berk; Beck, Susan L.; Zandt, George; Özacar, Atilla Arda (2013-12-09)
The tectonics of the Mediterranean region is characterized by an intricate configuration of arcuate subduction zones and mountain belts. The evolution and the geodynamics of these zones are controlled by closure of Tethys Ocean and the convergence of the Eurasian and the African plates. The interplay between convergence-related compression and slab rollback related extension throughout the convergence zone is further complicated by processes such as termination of subduction, and tearing and detachment of s...
Structural evidence for strike-slip deformation in the Izmir-Balikesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey)
UZEL, BORA; SÖZBİLİR, HASAN; Ozkaymak, Caglar; Kaymakcı, Nuretdin; Langereis, Cornelis G. (2013-04-01)
The Izmir-Balikesir transfer zone (IBTZ) is a recently recognized strike-slip dominated shear zone that accommodates the differential deformation between the Cycladic and Menderes core complexes within the Aegean Extensional System. Here, we present new structural and kinematic data obtained from field observations and 1/25,000 scale mapping of Miocene to Recent units within the IBTZ around Izmir Bay. The results point out that the IBTZ is a transtensional brittle shear zone that affects the pre-Neogene bas...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Uzel et al., “Evolution of seismically active İzmir-Balıkesir Transfer Zone: A reactivated and deep-seated structure since the Miocene,” presented at the European Geosciences UnionGeneral Assembly 2017, Vienna, Avusturya, 23 - 28 Nisan 2017, Vienna, Avusturya, 2017, Accessed: 00, 2021. [Online]. Available: http://meetingorganizer.copernicus.org/EGU2017/EGU2017-8190.pdf.