Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computation of projections for the abstraction-based diagnosability verification
Date
2010-12-01
Author
Schmidt, Klaus Verner
Metadata
Show full item record
Item Usage Stats
127
views
0
downloads
Cite This
The verification of language-diagnosability (LD) for discrete event systems (DES) generally requires the explicit evaluation of the overall system model which is infeasible for practical systems. In order to circumvent this problem, our previous work proposes the abstraction-based LD verification using natural projections that fulfill the loop-preserving observer (LPO) property. In this paper, we develop algorithms for the verification and computation of such natural projections. We first present a polynomial-time algorithm that allows to test if a given natural projection is a loop-preserving observer. Then, we show that, in case the LPO property is violated, finding a minimal extension of the projection alphabet such that the LPO condition holds is NP-hard. Finally, we adapt a polynomial-time heuristic algorithm by Feng and Wonham for the efficient computation of loop-preserving observers.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80051976649&origin=inward
https://hdl.handle.net/11511/82642
Conference Name
Computation of projections for the abstraction-based diagnosability verification, 10th International Workshop on Discrete Event Systems, WODES 2010, Berlin, Almanya, 30 Ağustos - 01 Eylül 2010
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
NUMERICAL ANALYSIS AND TESTING OF A FULLY DISCRETE, DECOUPLED PENALTY-PROJECTION ALGORITHM FOR MHD IN ELSASSER VARIABLE
AKBAŞ, MİNE; Kaya Merdan, Songül; MOHEBUJJAMAN, Muhammed; rebholz, leo (2016-01-01)
We consider a fully discrete, efficient algorithm for magnetohydrodynamic (MHD) flow that is based on the Elsasser variable formulation and a timestepping scheme that decouples the MHD system but still provides unconditional stability with respect to the timestep. We prove stability and optimal convergence of the scheme, and also connect the scheme to one based on handling each decoupled system with a penalty-projection method. Numerical experiments are given which verify all predicted convergence rates of ...
Efficient Abstractions for the Supervisory Control of Modular Discrete Event Systems
Schmidt, Klaus Verner (2012-12-01)
The topic of this technical note is the nonblocking and maximally permissive abstraction-based supervisory control for modular discrete event systems (DES). It is shown, that an efficient abstraction technique, that was developed for the nonconflict verification of modular DES, is also suitable for the nonblocking supervisory control. Moreover, it is proved that this abstraction technique can be extended by the condition of local control consistency, in order to achieve maximally permissive supervision. Dif...
Verification of Modular Diagnosability With Local Specifications for Discrete-Event Systems
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2013-09-01)
In this paper, we study the diagnosability verification for modular discrete-event systems (DESs), i.e., DESs that are composed of multiple components. We focus on a particular modular architecture, where each fault in the system must be uniquely identified by the modular component where it occurs and solely based on event observations of that component. Hence, all diagnostic computations for faults to be detected in this architecture can be performed locally on the respective modular component, and the obt...
Hierarchical and decentralized multitasking control of discrete event systems
Schmidt, Klaus Verner; Cury, José E. R. (2007-12-01)
In this paper, a hierarchical and decentralized approach for composite discrete-event systems (DES) that have to fulfill multiple tasks is elaborated. Colored marking generators that can distinguish classes of tasks are used as the system model, and a colored abstraction procedure as well as sufficient conditions for nonblocking and hierarchically consistent control are developed. It is shown that the computational complexity for supervisor computation is reduced. A flexible manufacturing system example dem...
Fuzzy Hybrid Systems modeling with application in decision making and control
Boutalis, Yiannis; Moor, Thomas; Schmidt, Klaus Verner (2012-11-28)
Hybrid Systems are systems containing both discrete event and continuous variable components. Many recent contributions address crisp situations, where ambiguity or subjectivity in the measured data is absent. In this paper, we propose Fuzzy Hybrid Systems to account for inaccurate measurements and uncertain dynamics. We present a strategy to determine the most appropriate control actions in a sampled data setting. The proposed approach is based on three basic steps that are performed in each sampling perio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. V. Schmidt, “Computation of projections for the abstraction-based diagnosability verification,” Berlin, Almanya, 2010, vol. 10, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80051976649&origin=inward.