Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application of artificial neural network and logistic regression methods to landslide susceptibility mapping and comparison of the results for the ulus district, Bartin Bartin, ulus ilçesi için yapay sinir aǧi ve lojistik regresyon yöntemlerinin heyelan duyarlilik çalişmasina uygulanmasi ve karşilaştirilmasi
Date
2012-03-01
Author
Eker, Arif Mert
Dikmen, Mehmet
Cambazoǧlu, Selim
Düzgün, Şebnem H.s.b.
Akgün, Haluk
Metadata
Show full item record
Item Usage Stats
345
views
0
downloads
Cite This
Bu çalışma, Coğrafi Bilgi Sistemlerine (CBS) dayalı lojistik regresyon (LR) ve yapay sinir ağı (YSA) analizlerini kullanarak, Karadeniz bölgesindeki Bartın ilinin Ulus ilçesi için bir heyelan duyarlılık haritası hazırlamayı amaçlamaktadır. Bu araştırma kapsamında, Maden Tetkik ve Araştırma Genel Müdürlüğü tarafından hazırlanan heyelan envanter haritası, heyelan sınıflandırma haritasına temel olarak alınmıştır. Çalışma alanındaki analizlerin tamamı aktif heyelanlara istinaden gerçekleştirilmiştir. Bununla birlikte, on dört açıklayıcı değişken CBS’de sayısallaştırılmış, birleştirilmiş ve düzenlenmiştir. Çalışma alanı 250 m x 250 m’lik hücrelere bölünmüş ve heyelan envanter bilgisinin, alan üzerindeki yayılımının daha anlamlı bir popülasyon dağılımı göstermesini sağlamak için çekirdek (Kernel) yoğunluğu yöntemi uygulanmış, tüm değişkenler, oluşturulmuş olan bu envanter verisine dahil edilmiştir. Bağımlı değişken, kalibrasyon ve doğrulama olarak iki veri setine ayrılmıştır. Bağımlı ve bağımsız değişkenler arasındaki ilişkiyi bulmak ve farklı tekniklerin oluşturduğu heyelan duyarlılık bölgelemesi sonuçlarını karşılaştırıp en uygun duyarlılık yöntemini değerlendirmek için LR ve YSA olmak üzere iki farklı yöntem kullanılmıştır.
Subject Keywords
Heyelan duyarlılığı,
,
Lojistik regresyon
,
Yapay sinir ağı
,
Ulus
,
Bartın
,
Landslide susceptibility
,
Logistic regression
,
Artificial neural network
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84859360838&origin=inward
https://hdl.handle.net/11511/82691
Journal
Journal of the Faculty of Engineering and Architecture of Gazi University
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Evaluation and Comparison of Landslide Susceptibility Mapping Methods A Case Study for the Ulus District Bartın Northern Turkey
ARİF MERT, EKER; DİKMEN, MEHMET; CAMBAZOĞLU, SELİM; DÜZGÜN, HAFİZE ŞEBNEM; Akgün, Haluk (2015-01-01)
The purpose of this study was to investigate the capabilities of different landslide susceptibility methods by comparing their results statistically and spatially to select the best method that portrays the susceptibility zones for the Ulus district of the Bartin province (northern Turkey). Susceptibility maps based on spatial regression (SR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression (LR) method, and artificial neural network method (ANN) were generated,...
Artificial-neural-network prediction of hexagonal lattice parameters for non-stoichiometric apatites
Kockan, Umit; Ozturk, Fahrettin; Evis, Zafer (2014-01-01)
In this study, hexagonal lattice parameters (a and c) and unit-cell volumes of non-stoichiometric apatites of M-10(TO4)(6)X-2 are predicted from their ionic radii with artificial neural networks. A multilayer-perceptron network is used for training. The results indicate that the Bayesian regularization method with four neurons in the hidden layer with a tansig activation function and one neuron in the output layer with a purelin function gives the best results. It is found that the errors for the predicted ...
Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods
ERENER, ARZU; Sivas, A. Abdullah; Kestel, Sevtap Ayşe; Duzgun, H. Sebnem (2017-07-01)
All of the quantitative landslide susceptibility mapping (QLSM) methods requires two basic data types, namely, landslide inventory and factors that influence landslide occurrence (landslide influencing factors, LIF). Depending on type of landslides, nature of triggers and LIF, accuracy of the QLSM methods differs. Moreover, how to balance the number of 0 (nonoccurrence) and 1 (occurrence) in the training set obtained from the landslide inventory and how to select which one of the 1's and 0's to be included ...
Artificial neural network modeling for forecasting gas consumption
Gorucu, FB; Geris, PU; Gumrah, F (Informa UK Limited, 2004-02-01)
This study includes an approach to evaluate and forecast gas consumption by Artificial Neural Network (ANN) modeling for the capital city of Ankara, Turkey. ANN models have been trained to perform complex functions in various fields of application including the forecasting process. The process of the study is examining the factors affecting the output and training the ANNs to decide the optimum parameters to be used in forecasting the gas consumption for the remaining days of 2002 and the year 2005. During ...
Integration of geophysical - geological data using geographic information systems
Şirinyıldız, Tunç; Toprak, Vedat; Department of Geodetic and Geographical Information Technologies (2003)
This study attempts to integrate geophysical data with other spatial data using Geographic Information Systems (GIS). The study is carried out in a part of Galatean Volcanic Province, north of Ankara. Gravity, magnetic, topographic, rock type and volcanic eruption center data are the data layers used in the study. All data layers are converted to raster format with a grid spacing of 100 m. The first step in the analysis is the pair-wise analyses of all data layers. For the geophysical data, different layers...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. M. Eker, M. Dikmen, S. Cambazoǧlu, Ş. H. s. b. Düzgün, and H. Akgün, “Application of artificial neural network and logistic regression methods to landslide susceptibility mapping and comparison of the results for the ulus district, Bartin Bartin, ulus ilçesi için yapay sinir aǧi ve lojistik regresyon yöntemlerinin heyelan duyarlilik çalişmasina uygulanmasi ve karşilaştirilmasi,”
Journal of the Faculty of Engineering and Architecture of Gazi University
, pp. 163–173, 2012, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84859360838&origin=inward.