Investigation of Dynamic and Static Effects on Earthquake Triggering Using Different Rate and State Friction Laws and Marmara Simulation

2020-05-04
Sopacı, Eyüp
Özacar, Atilla Arda
The clock of an earthquake can be advanced due to dynamic and static changes when a triggering signal is applied to a stress-loading fault. While static effects decrease rapidly with distance, dynamic effects can reach thousands of kilometers away. Therefore, earthquake triggering is traditionally associated to static stress changes at local distances and to dynamic effects at greater scales. However, static and dynamic effects near the triggering signal are often nested, thus identifying which effect dominates, becomes unclear. So far, earthquake triggering has been tested using different rate-and-state friction (RSF) laws utilizing alternative views of friction without much comparison. In this study, the analogy of an earthquake is simulated using single degree of freedom spring-block systems governed with three different RSF laws, namely "Dieterich", "Ruina" and "Perrin". First, the fault systems are evolved until they reach a stable limit cycle and then static, dynamic and their combination are applied as triggering signals. During synthetic simulations, effects of the triggering signal parameters (onset time, size, duration and frequency) and the fault system parameters (fault stiffness, characteristic slip distance, direct velocity and time dependent state effects) are tested separately. Our results indicate that earthquake triggering is controlled mainly by the onset time, size and duration of the triggering signal but not much sensitive to the signal frequency. In terms of fault system parameters, the fault stiffness and the direct velocity effect are the critical parameters in triggering processes. Among the tested RSF laws, "Ruina" law is more sensitive than "Dieterich" law to both static and dynamic changes and "Perrin" is apparently the most sensitive law to dynamic changes. Especially, when the triggering onset time is close to an unperturbed failure time (future earthquake), dynamic changes result the largest clock advancement, otherwise, static stress changes are substantially more effective. In the next step, realistic models will be established to simulate the effect of the recent (26 September 2019) Marmara earthquake with Mw=5.7 on the locked Kumburgaz fault segment of the North Anatolian Fault Zone. The triggering earthquake will be simulated by combining the static stress change computed via Coulomb law and the dynamic effects using ground motions recorded at broadband seismic stations within similar distances. Outcomes will help us to better understand the effects of static and dynamic changes on the seismic cycle of the Kumburgaz fault segment, which is expected to break soon with a possibly big earthquake causing damage at the metropolitan area of Istanbul in Turkey.

Suggestions

Analysis of conventional low voltage power line communication methods for automatic meter reading and the classification and experimental verification of noise types for low voltage power line communication network
Danışman, Batuhan; Sevaioğlu, Osman; Department of Electrical and Electronics Engineering (2009)
In this thesis, the conventional low voltage power line communication methods is investigated in the axis of automated meter reading applications and the classification and experimental verification of common noise types for low voltage power line communication network. The investigated system provides the real time transmission of electricity consumption data recorded by electricity meters, initially to a local computer via a low voltage line through a low speed PLC (Power Line Carrier) environment and sub...
Spatial sensitivity of seismic hazard results to different background seismic activity and temporal earthquake occurrence models
Yilmaz, Nazan; Yücemen, Mehmet Semih (Elsevier BV, 2011-07-01)
Spatial sensitivity of seismic hazard results to different models with respect to background seismic activity and earthquake occurrence in time is investigated. For the contribution of background seismic activity to seismic hazard, background area source with uniform seismicity and spatially smoothed seismicity models are taken into consideration. For the contribution of faults, through characteristic earthquakes, both the memoryless Poisson and the time dependent renewal models are utilized. A case study, ...
Application of an analytical model to an actual CDMA system feedforward linearizer
Coskun, A. Hakan; Demir, Şimşek (2003-01-01)
Analysis and design of feedforward systems are complicated due to the presence of two nonlinear amplifiers and the requirement of amplitude, delay, and phase match in two different loops. For this reason, analytical tools are hard to develop but are required for initial designs and understanding of the system performance. Relation of the actual systems and the models based on certain assumptions is necessary. In this work we extend the previously developed analytical model and present the verifications with...
Analysis and Characterization of DC Bus Ripple Current of Two-Level Inverters Using The Equivalent Centered Harmonic Approach
Ayhan, Ufuk; Hava, Ahmet Masum (2011-09-22)
The dc bus PWM ripple current of three-phase two-level voltage source inverters is a function of the PWM method, the load current magnitude, power factor angle, and the modulation index. Thus, the ripple current characteristics are highly involved and difficult to understand. Using the double Fourier integral approach, this paper investigates the ripple current characteristics thoroughly for a wide range of operating conditions and PWM methods. Then, the equivalent harmonic approach is used to lump the ripp...
Evaluation of Sparsity-based Methods for Parameterized Source Separation
Baskaya, Hasan Can; Öktem, Sevinç Figen (2020-10-07)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Sparsity-based methods used in compressive sensing are also applied to parametric recovery problems. These methods discretize the parameter space to form a dictionary whose atoms correspond to candidate parameter values, represent the data ...
Citation Formats
E. Sopacı and A. A. Özacar, “Investigation of Dynamic and Static Effects on Earthquake Triggering Using Different Rate and State Friction Laws and Marmara Simulation,” presented at the 22nd EGU General Assembly (4 - 08 Mayıs 2020), Avusturya, 2020, Accessed: 00, 2021. [Online]. Available: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-533.html.