Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of an Experimental Setup for Periodic Forced Response Analysis of Shrouded Blades with Frictional Contacts
Date
2019-11-02
Author
Öney, Eren
Ciğeroğlu, Ender
Metadata
Show full item record
Item Usage Stats
285
views
0
downloads
Cite This
High-cycle fatigue is one of the most frequent reasons of failure for turbomachinery and in early design process it is crucial to predict the vibration levels. Friction dampers or frictional contacts are commonly used in the design of gas turbine engines in order to decrease vibration levels and increase high-cycle fatigue lives of blades. However, due to the nonlinear behavior, dry friction complicates analysis of these systems. In this study, in order to understand the nonlinear frictional contact behavior which affects the damping characteristics of the shrouded blades, an experimental test setup is designed. The setup consists of a shrouded blade which is excited by a modal shaker and data acquisition system is designed to measure dynamic responses of stationary shrouded blade. The effects of different shroud contact angle, shroud positions along radial direction, normal preload and different excitation forces are investigated on the first bending mode of the blade.
URI
http://www.arf2019.org/
https://hdl.handle.net/11511/82785
Conference Name
8th Asian/Australian Rotorcraft Forum 2019
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Development of experimental test setups for bladed disks and non-linear vibration
Öney, Eren; Ciğeroğlu, Ender; Department of Mechanical Engineering (2019)
High-cycle fatigue is one of the most frequent reason of failure for turbomachines and in early design process, so it is crucial to predict the vibration levels. Various finite element modelling techniques for bladed-disk systems appear in the literature, including both reducing large size FEM and describing the frictional contact interface. However, not only having a large size FEM but also including the nonlinear friction to models makes the task very struggling and time consuming. In order to enhance the...
Design and development of a modular dynamic test system for resilient mechanical components and viscoelastic materials
Bilgi, Erkin Barış; Özgen, Gökhan Osman; Department of Mechanical Engineering (2016)
Vibration is a critical phenomenon because unwanted vibration causes energy wasting, noise, premature failure etc. For this reason, control and isolation of vibration has importance. Viscoelastic materials such as plastics, rubbers etc., which show both viscous and elastic behaviors under the effect of stress, are used in many different vibration control and isolation applications. In addition to viscoelastic materials, resilient mechanical components such as springs, vibration mounts etc. are also importan...
Implementation of Dirlik’s damage model for the vibration fatigue analysis
Demirel, Gürzap İ.; Kayran, Altan (2019)
Mechanical fatigue is an important phenomenon when the structures are exposed to dynamic, fluctuating loadings. Especially aerospace structures are commonly exposed to random vibration loadings. In this paper, random vibration fatigue is studied both numerically and experimentally. For this purpose, a rectangular cross-section notched beam is designed in order to conduct the vibration fatigue analysis in the frequency domain by the Dirlik's damage model. Aluminum and steel notched beams are prepared in orde...
Determining the endurance limit of AISI 4340 steels in terms of different statistical approaches
Caliskan, Salim; Gürbüz, Rıza (2021-10-01)
In engineering applications, fatigue phenomenon is a key issue and needs to be analyzed in the beginning of design phase in case of any component exposed to alternating loading on operation otherwise catastrophic fatigue failure may cause. Component can be designed with safe life, fail-safe, and damage tolerant approach based on whether redundant load path and damage sensitive. Before starting analyzing the structure, material allowable data needs to be presented in a reliable way to predict fatigue life of...
Design of a compliant mechanism to amplify the stroke of a piezoelectric stack actuator
Keskin, Tamer; Özgen, Gökhan Osman; Department of Mechanical Engineering (2013)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimizati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Öney and E. Ciğeroğlu, “Design of an Experimental Setup for Periodic Forced Response Analysis of Shrouded Blades with Frictional Contacts,” presented at the 8th Asian/Australian Rotorcraft Forum 2019, Ankara, TURKEY, 2019, Accessed: 00, 2021. [Online]. Available: http://www.arf2019.org/.