Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finitely presented quadratic algebras of intermediate growth
Date
2015-01-01
Author
Koçak Benli, Dilber
Metadata
Show full item record
Item Usage Stats
294
views
0
downloads
Cite This
In this article, we give two examples of finitely presented quadratic algebras (algebras presented by quadratic relations) of intermediate growth.
Subject Keywords
Finitely presented algebras
,
growth of algebras
,
quadratic relations
URI
https://hdl.handle.net/11511/83296
http://admjournal.luguniv.edu.ua/index.php/adm/article/view/100
Journal
Algebra and Discrete Mathematics
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Characterisation and enumeration of a class of semi bent quadratic Boolean functions
KOÇAK, Neşe; Koçak, Onur Ozan; Özbudak, Ferruh; SAYGI, ZÜLFÜKAR (2015-01-01)
In this paper, we consider semi-bentness of quadratic Boolean functions defined for even n and give the characterisation of these functions. Up to our knowledge, semi-bentness of this class has not been investigated before and we proved that semi-bent functions of this form exist only for 6|n. Furthermore, we present a method for enumeration of semi-bent and bent functions in certain classes. Using this method we find the exact number of semi-bent functions of this form. Moreover, we complete some previous ...
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
Quotients of Real Algebraic Sets via Finite Groups
Ozan, Yıldıray (1997-01-01)
In this paper, we will study finite algebraic group actions on real algebraic sets and compare the topological quotient X/G with the algebraic quotient X/ /G. We will give a different and shorter proof of a result of Procesi and Schwarz, stating that if the order of the group G, acting algebraically on a real algebraic set X, is odd then X/G is equal to X/ /G. In the case of even order groups, we will a give sufficient condition ( and a necessary condition in the case G = Z_2 ) for the X / G to be equal to...
Regularities in noncommutative Banach algebras
Dosiev, Anar (Springer Science and Business Media LLC, 2008-07-01)
In this paper we introduce regularities and subspectra in a unital noncommutative Banach algebra and prove that there is a correspondence between them similar to the commutative case. This correspondence involves a radical on a class of Banach algebras equipped with a subspectrum. Taylor and Slodkowski spectra for noncommutative tuples of bounded linear operators are the main examples of subspectra in the noncommutative case.
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
Pekmen, B.; Tezer, Münevver (2012-08-01)
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Koçak Benli, “Finitely presented quadratic algebras of intermediate growth,”
Algebra and Discrete Mathematics
, pp. 69–88, 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/83296.