Mitigating internal resonances of the magnetic-field integral equation via double-layer modeling

2018-04-13
We present a new method to mitigate internal resonances of the magnetic-field integral equation (MFIE) for closed conductors, without combining this equation with the electric-field integral equation (EFIE) that is commonly practiced in the literature. For a given object and its surface, a smaller closed surface is placed inside to create a double layer. This way, the magnetic field intensity is enforced to zero on the inner surface, making the overall solution unique at all frequencies. By eliminating the need for EFIE, the resulting implementation is purely based on MFIE interactions. In addition to its formulation, the initial numerical results of the proposed method on canonical problems are presented. © 2018 Institution of Engineering and Technology.
12th European Conference on Antennas and Propagation ( 13 April 2018) 2018)

Suggestions

Novel strategies for second-kind integral equations to analyze perfect electric conductors
Güler, Sadri; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In this thesis, the magnetic-field integral equation (MFIE) for three-dimensional perfectly conducting objects is studied with a particular focus on the solutions of the formulation with the method of moments employing low-order discretization elements. Possible discretization functions and their applications in the testing of MFIE while considering different numbers of testing points are analyzed for accurate and efficient solutions. Successful results are obtained by using rotational Buffa-Christiansen te...
Combined Potential-Field Surface Formulations for Resonance-Free and Low-Frequency-Stable Analyses of Three-Dimensional Closed Conductors
Eris, Ozgur; Karaova, Gokhan; Ergül, Özgür Salih (2021-03-22)
We present combined formulations involving the recently developed potential integral equations (PIEs) together with field formulations, particularly the magnetic-field integral equation (MFIE), for accurate, efficient, and stable analyses of three-dimensional closed conductors. This kind of combinations are required since PIEs suffer from internal resonances and are prone to numerical issues for relatively large conductors. By combining PIEs with MFIE, we obtain low-frequency-stable implementations that can...
Solution of the nonlinear diffusion equation using the dual reciprocity boundary element method and the relaxation type time integration scheme
Meral, G (2005-03-18)
We present the combined application of the dual reciprocity boundary element method (DRBEM) and the finite difference method (FDM) with a relaxation parameter to the nonlinear diffusion equation: partial derivative u/partial derivative t = V del(2)u + p(u) at where p(u) is the nonlinear term. The DRBEM is employed to discretize the spatial partial derivatives by using the fundamental solution of the Laplace operator, keeping the time derivative and the nonlinearity as the nonhomogeneous terms in the equatio...
Generalized Hybrid Surface Integral Equations for Finite Periodic Perfectly Conducting Objects
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-01-01)
Hybrid formulations that are based on simultaneous applications of diversely weighted electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) on periodic but finite structures involving perfectly conducting surfaces are presented. Formulations are particularly designed for closed conductors by considering the unit cells of periodic structures as sample problems for optimizing EFIE and MFIE weights in selected regions. Three-region hybrid formulations, which are designed by geneti...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Citation Formats
S. Güler, H. İbili, and Ö. S. Ergül, “Mitigating internal resonances of the magnetic-field integral equation via double-layer modeling,” London; United Kingdom, 2018, vol. 2018, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057302506&origin=inward.