On the condensation property of the lamplighter groups and groups of intermediate growth

2014-06-01
The aim of this short note is to revisit some old results about groups of intermediate growth and groups of the lamplighter type and to show that the Lamplighter group L = Z2 ≀ Z is a condensation group and has a minimal presentation by generators and relators. The condensation property is achieved by showing that L belongs to a Cantor subset of the space M2 of marked 2-generated groups consisting mostly of groups of intermediate growth.
ALGEBRA & DISCRETE MATHEMATICS

Suggestions

Universal groups of intermediate growth and their invariant random subgroups
Benli, Mustafa Gökhan; Nagnibeda, Tatiana (2015-07-01)
We exhibit examples of groups of intermediate growth with ergodic continuous invariant random subgroups. The examples are the universal groups associated with a family of groups of intermediate growth.
Description of Barely Transitive Groups with Soluble Point Stabilizer
Betin, Cansu; Kuzucuoğlu, Mahmut (Informa UK Limited, 2009-6-4)
We describe the barely transitive groups with abelian-by-finite, nilpotent-by-finite and soluble-by-finite point stabilizer. In article [6] Hartley asked whether there is a torsionfree barely transitive group. One consequence of our results is that there is no torsionfree barely transitive group whose point stabilizer is nilpotent. Moreover, we show that if the stabilizer of a point is a permutable subgroup of an infinitely generated barely transitive group G, then G is locally finite.
Frobenius groups of automorphisms with almost fixed point free kernel
Ercan, Gülin (2019-03-01)
Let FH be a Frobenius group with kernel F and complement H, acting coprimely on the finite solvable group G by automorphisms. We prove that if C-G(H) is of Fitting length n then the index of the n-th Fitting subgroup F-n(G) in G is bounded in terms of vertical bar C-G(F)vertical bar and vertical bar F vertical bar. This generalizes a result of Khukhro and Makarenko [6] which handles the case n = 1.
On the nilpotent length of a finite group with a frobenius group of automorphisms
Öğüt, Elif; Ercan, Gülin; Güloğlu, İsmail Ş.; Department of Mathematics (2013)
Let G be a finite group admitting a Frobenius group FH of automorphisms with kernel F and complement H. Assume that the order of G and FH are relatively prime and H acts regularly on the fixed point subgroup of F in G. It is proved in this thesis that the nilpotent length of G is less than or equal to the sum of the nilpotent length of the commutator group of G and F with 1 and the nilpotent length of the commutator group of G and F is equal to the nilpotent length of the fixed point subgroup of H in the co...
On the generating graphs of the symmetric and alternating groups
Erdem, Fuat; Ercan, Gülin; Maróti, Attila; Department of Mathematics (2018)
Dixon showed that the probability that a random pair of elements in the symmetric group $S_n$ generates $S_n$ or the alternating group $A_n$ tends to $1$ as $n to infty$. (A generalization of this result was given by Babai and Hayes.) The generating graph $Gamma(G)$ of a finite group $G$ is defined to be the simple graph on the set of non-identity elements of $G$ with the property that two elements are connected by and edge if and only if they generate $G$. The purpose of this thesis is to study the graphs ...
Citation Formats
M. G. Benli, “On the condensation property of the lamplighter groups and groups of intermediate growth,” ALGEBRA & DISCRETE MATHEMATICS, pp. 222–231, 2014, Accessed: 00, 2021. [Online]. Available: http://adm.luguniv.edu.ua/.