Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Universal groups of intermediate growth and their invariant random subgroups
Download
index.pdf
Date
2015-07-01
Author
Benli, Mustafa Gökhan
Nagnibeda, Tatiana
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
352
views
118
downloads
Cite This
We exhibit examples of groups of intermediate growth with ergodic continuous invariant random subgroups. The examples are the universal groups associated with a family of groups of intermediate growth.
Subject Keywords
Invariant random subgroup
,
Group of intermediate growth
,
Space of marked groups
URI
https://hdl.handle.net/11511/33334
Journal
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
DOI
https://doi.org/10.1007/s10688-015-0101-4
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Algebraic curves hermitian lattices and hypergeometric functions
Zeytin, Ayberk; Önsiper, Mustafa Hurşit; Department of Mathematics (2011)
The aim of this work is to study the interaction between two classical objects of mathematics: the modular group, and the absolute Galois group. The latter acts on the category of finite index subgroups of the modular group. However, it is a task out of reach do understand this action in this generality. We propose a lattice which parametrizes a certain system of ”geometric” elements in this category. This system is setwise invariant under the Galois action, and there is a hope that one can explicitly under...
Descriptive complexity of subsets of the space of finitely generated groups
Benli, Mustafa Gökhan; Kaya, Burak (2022-12-01)
© 2022 Elsevier GmbHIn this paper, we determine the descriptive complexity of subsets of the Polish space of marked groups defined by various group theoretic properties. In particular, using Grigorchuk groups, we establish that the sets of solvable groups, groups of exponential growth and groups with decidable word problem are Σ20-complete and that the sets of periodic groups and groups of intermediate growth are Π20-complete. We also provide bounds for the descriptive complexity of simplicity, amenability,...
Equivariant Picard groups of the moduli spaces of some finite Abelian covers of the Riemann sphere
Ozan, Yıldıray (2023-03-01)
In this note, following Kordek's work we will compute the equivariant Picard groups of the moduli spaces of Riemann surfaces with certain finite abelian symmetries.
Loop Representation of Wigner’s Little Groups
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E (MDPI AG, 2017-6-23)
Wigner's little groups are the subgroups of the Lorentz group whose transformations leave the momentum of a given particle invariant. They thus define the internal space-time symmetries of relativistic particles. These symmetries take different mathematical forms for massive and for massless particles. However, it is shown possible to construct one unified representation using a graphical description. This graphical approach allows us to describe vividly parity, time reversal, and charge conjugation of the ...
Knotting of algebraic curves in CP2
Finashin, Sergey (2002-01-01)
For any k⩾3, I construct infinitely many pairwise smoothly non-isotopic smooth surfaces homeomorphic to a non-singular algebraic curve of degree 2k, realizing the same homology class as such a curve and having abelian fundamental group ⧹ . This gives an answer to Problem 4.110 in the Kirby list (Kirby, Problems in low-dimensional topology, in: W. Kazez (Ed.), Geometric Topology, AMS/IP Stud. Adv. Math. vol 2.2, Amer. Math. Soc., Providence, 1997).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. G. Benli and T. Nagnibeda, “Universal groups of intermediate growth and their invariant random subgroups,”
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
, pp. 159–174, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33334.