Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Seismic retrofitting of RC buildings using energy dissipating shear link
Date
2018-09-28
Author
Dicleli, Murat
Metadata
Show full item record
Item Usage Stats
236
views
0
downloads
Cite This
Subject Keywords
Reinforced concrete building
,
Seismic
,
Retrofit
URI
https://hdl.handle.net/11511/84116
Conference Name
Australian Structural Engineering Conference (2018)
Collections
Department of Engineering Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Seismic Retrofit of Deficient RC Structures with Internal Steel Frames
ÖZÇELİK, RAMAZAN; Akpinar, Ugur; Binici, Barış (2011-12-01)
This paper describes an experimental study on internal steel frames (ISFs) to retrofit seismically deficient reinforced concrete (RC) frames. One reference and six strengthened frame specimens were tested under constant gravity load and cyclic lateral displacement excursions. Installation of the ISF with and without anchors to the RC frame was examined. Test results showed that the snug tight ISF installed inside an RC frame may suffice to realize the benefit of implementing ISFs. If the horizontal shear st...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Reinforced concrete rectangular members subjected to pure torsion.
Berkman, Rıdvan Metin; Ersoy, Uğur; Department of Civil Engineering (1976)
Seismic vulnerability assessment using regional empirical data
Yakut, Ahmet; Yucemen, M. Semih (2006-08-01)
This article presents a procedure developed for the seismic performance assessment of low- to mid-rise reinforced concrete buildings in Turkey. The past performance of reinforced concrete buildings during major earthquakes have been compiled and analysed comprehensively using statistical procedures in order to study the empirical correlation between the significant damage inducing parameters and the observed damage. A damage database of nearly 500 representative buildings experiencing the 1999 Kocaeli and D...
Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat (2010-10-01)
This paper is focused on a proposed seismic retrofitting system (PRS) configured to upgrade the performance of seismically vulnerable reinforced concrete (RC) buildings. The PRS is composed of a rectangular steel housing frame with chevron braces and a yielding shear link connected between the braces and the frame. The retrofitting system is installed within the bays of an RC building frame to enhance the stiffness, strength and ductility of the structure. The PRS and a conventional retrofitting system usin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Seismic retrofitting of RC buildings using energy dissipating shear link,” Adelaide, Australia, 2018, p. 316, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84116.