Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of long term trends of precipitation estimates acquired using radar network in Turkey
Date
2016-04-17
Author
Yılmaz, Mustafa Tuğrul
Yücel, İsmail
Yılmaz, Koray Kamil
Metadata
Show full item record
Item Usage Stats
189
views
0
downloads
Cite This
Precipitation estimates, a vital input in many hydrological and agricultural studies, can be obtained using many different platforms (ground station-, radar-, model-, satellite-based). Satellite- and model-based estimates are spatially continuous datasets, however they lack the high resolution information many applications often require. Station-based values are actual precipitation observations, however they suffer from their nature that they are point data. These datasets may be interpolated however such end-products may have large errors over remote locations with different climate/topography/etc than the areas stations are installed. Radars have the particular advantage of having high spatial resolution information over land even though accuracy of radar-based precipitation estimates depends on the Z-R relationship, mountain blockage, target distance from the radar, spurious echoes resulting from anomalous propagation of the radar beam, bright band contamination and ground clutter. A viable method to obtain spatially and temporally high resolution consistent precipitation information is merging radar and station data to take advantage of each retrieval platform. An optimally merged product is particularly important in Turkey where complex topography exerts strong controls on the precipitation regime and in turn hampers observation efforts. There are currently 10 (additional 7 are planned) weather radars over Turkey obtaining precipitation information since 2007. This study aims to optimally merge radar precipitation data with station based observations to introduce a station-radar blended precipitation product. This study was supported by TUBITAK fund # 114Y676.
URI
https://hdl.handle.net/11511/84308
Conference Name
EGU General Assembly 2016, (17 - 22 Nisan 2016)
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Evaluation of satellite and model precipitation products over Turkey
Amjad, Muhammad; Yılmaz, Mustafa Tuğrul (null; 2017-12-15)
Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products...
Investigation of the dependence of satellite-based precipitation estimate errors to distance from the coastline Uydu Kaynakli Yaǧmur Verilerinin Hata Oranlarinin Deniz Kiyilarina Olan Uzakliǧa Baǧli Analizi
YILMAZ, MERİÇ; Amjad, Muhammad; Bulut, Burak; Yılmaz, Mustafa Tuğrul (2017-01-01)
In this study, Tropical Rainfall Measuring Mission (TRMM) 3B42 v7 satellite based rainfall data are verified by using cumulative monthly rainfall data measured at 257 stations operated by the General Directorate of Meteorology between 1998 and 2014. Long-term mean values of station-based and satellite-based rainfall data, correlation between them, Standard deviation of monthly average and anomaly components, and standard deviation of satellite based data error are analyzed. Variation of satellite-based data...
Analyses of atmospheric and marine observations along the Turkish coast
Tutsak, Ersin; Özsoy, Emin; Department of Physical Oceanography (2012)
Time series and spectral analyses are applied to meteorological data (wind velocity, air temperature, barometric pressure) and sea level measurements from a total of 13 monitoring stations along the Turkish Coast. Analyses of four-year time series identify main time scales of transport and motion while establishing seasonal characteristics, i.e. distinguishing, for instance, between winter storms and summer sea-breeze system. Marine flow data acquired by acoustic doppler current pro filers (ADCP) is also a...
Validation of TMPA and ECMWF Precipitation Estimates Using Gauge Based Observations over West Azarbayjan province of Iran
Hesamı Afshar, Mehdı; Amjad, Muhammad; Bulut, Burak; Düzenli, Eren; Patakchi Yousufi, Kaveh; Yılmaz, Mustafa Tuğrul (2019-11-13)
Uncertainty estimation of precipitation products estimated from different platforms are essential for many hydrological and agricultural applications that use these datasets. Among the precipitation retrieval products satellite- and model-based estimates have the advantage of providing consistent and continuous precipitation records. This study evaluates a satellite-based product (TMPA 3B42V7) and a model-based product (ECMWF 1 daily deterministic forecast) by using 16 ground-based gauges data as reference ...
Evaluation of Remotely-Sensed and Model-Based Soil Moisture Products According to Different Soil Type, Vegetation Cover and Climate Regime Using Station-Based Observations over Turkey
Bulut, Burak; Yılmaz, Mustafa Tuğrul; Afshar, Mahdı Hesamı ; Sorman, A. Unal; Yücel, İsmail; Cosh, Michael H.; Simsek, Osman (MDPI AG, 2019-08-01)
This study evaluates the performance of widely-used remotely sensed- and model-based soil moisture products, including: The Advanced Scatterometer (ASCAT), the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the European Space Agency Climate Change Initiative (ESA-CCI), the Antecedent Precipitation Index (API), and the Global Land Data Assimilation System (GLDAS-NOAH). Evaluations are performed between 2008 and 2011 against the calibrated station-based soil moisture observations coll...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. T. Yılmaz, İ. Yücel, and K. K. Yılmaz, “Analysis of long term trends of precipitation estimates acquired using radar network in Turkey,” presented at the EGU General Assembly 2016, (17 - 22 Nisan 2016), Vienna, Austria, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84308.