Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical and Experimental Investigations of a New Hysteretic Damper
Date
2012-09-24
Author
Dicleli, Murat
Metadata
Show full item record
Item Usage Stats
172
views
0
downloads
Cite This
In this paper, analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multidirectional Torsional Hysteretic Damper (MTHD) is a recently-patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MTHD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guidelines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs. Analytical and experimental progress made so far in this on-going research is summarized in this paper.
URI
https://hdl.handle.net/11511/84699
https://data.smar-conferences.org/SMAR_2013_Proceedings/papers/314.pdf
Conference Name
15th World Conference on Earthquake Engineering (24 Eylül 2012)
Collections
Department of Engineering Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Systematic development of a new hysteretic damper based on torsional yielding: part I-design and development
Milani, Ali Salem; Dicleli, Murat (2016-05-01)
Analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented in two papers. Although the subject matter of the papers is a specific system, they are also intended as an illustration of practical application of diverse engineering tools in systematic development of an anti-seismic product. The Multi-directional Torsional Hysteretic Damper (MTHD) is a recently patented invention in which a symmetrical arrangement of identical cyli...
Passive damping and seismic isolation steel devices with displacement-dependent hardening
Dicleli, Murat (null; 2018-02-02)
In this paper, a summary of analytical and experimental studies into the behaviour of a new hysteretic damper and a seismic isolator designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) and its isolator version MARTI (Multi-Directional Adaptive Torsional Isolator) are patented inventions in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movement...
Newly developed passive damping and seismic isolation devices with adaptive post-elastic stiffness
Dicleli, Murat (null; 2017-04-27)
: In this paper, a summary of analytical and experimental studies into the behaviour of a new hysteretic damper and a seismic isolator designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) and its isolator version MARTI (Multi-Directional Adaptive Torsional Isolator) are patented inventions in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar moveme...
Steel Hysteretic Damper Featuring Displacement Dependent Hardening for Seismic Protection of Structures
Dicleli, Murat (Springer, London/Berlin , 2015-01-01)
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MTHD) is a recently-patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. In this paper,...
Steel hysteretic damper featuring displacement dependent hardening for seismic protection of structures
Dicleli, Murat (2014-11-26)
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MTHD) is a recently-patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Analytical and Experimental Investigations of a New Hysteretic Damper,” Lisbon, Portekiz, 2012, p. 1, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84699.