Experimental Investigation of the Effect of CNT addition on the strength of CFRP Curved Composite Beams,

2015-01-01
Miray, Arca
Uyar, Imren
Çöker, Demirkan
Carbon nanotubes (CNT) have been attracting attention as a toughening material in composite matrix due to their excellent mechanical properties. However, superior properties of CNTs have not yet been realized in the strengthening of composites against fracture. This study focuses on investigating the effect of CNT variation in the epoxy resin on the strength of curved composite beams. Specimens are [0/90] fabric carbon/epoxy composite laminates manufactured by hand layup technique 3 % wt CNT fractions in the epoxy resin. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M–06a and the load displacement plot is recorded. Digital Image Correlation technique is used to obtain deformation field in the laminate at the curved region just before delamination failure initiates. A high speed camera at 28,000 fps was used to capture the deformation sequence after initiation of failure. For the CNT added laminate, both CBS and failure load is found to decrease with the load-displacement behavior found to change from single load drop to multiple load drops. In addition, delamination is found to be constrained to the curved region for the CNT added laminate in contrast to the base laminate where delamination extends to the arms.

Suggestions

Experimental investigation of the effect of CNT addition on the strength of CFRP curved composite beams
Arca, M.A.; Uyar, I.; Çöker, Demirkan (2015-01-01)
Carbon nanotubes (CNT) have been attracting attention as a toughening material in composite matrix due to their excellent mechanical properties. However, superior properties of CNTs have not yet been realized in the strengthening of composites against fracture. This study focuses on investigating the effect of CNT variation in the epoxy resin on the strength of curved composite beams. Specimens are [0/90] fabric carbon/epoxy composite laminates manufactured by hand layup technique 3 % wt CNT fractions in th...
Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan (2015-03-15)
Varying experimental results on the mechanical properties of carbon nanotube reinforced polymer composites (CNTRPs) have been reported due to the complexities associated with the characterization of material properties in nano-scale. Insight into the issues associated with CNTRPs may be brought through computational techniques time- and cost-effectively. In this study, finite element models are generated in which single walled carbon nanotube models are embedded into the epoxy resin. For modelling interface...
Modelling and simulation of thin film semiconductor metal oxide gas sensor response
Atman, Berkan; Uludağ, Yusuf; Department of Chemical Engineering (2019)
Metal oxide based semiconductor gas sensors have attracted attention due to their superior properties. Over past five decades an extensive research had been conducted for understanding the true nature of the sensing mechanism, most suitable material and optimum operating conditions. SnO2 has received over years a great deal of attention as it can meet most of the necessary requirements of a gas sensor. Although commercially available gas sensors based on tin oxide are available and plenty of studies has bee...
Combined effects of ALS and SLS on Al2O3 reinforced composite nickel coatings
Yılmaz, Olgun; Karakaya, I. (Informa UK Limited, 2020-05-03)
The mechanical and tribological properties of electrochemical coatings can be enhanced by the embedded second phase particles to nickel matrix. Two different anionic surfactants sodium dodecyl sulfate and ammonium lignosulfonate were used together to adjust the wetting conditions and provide the suspension of Al2O3 particles in a nickel sulfamate electrolyte in this study. The effects of current density and amounts of the two surfactants on wear rate, coefficient of friction, and hardness were studied. It w...
Optimization of Pyrolysis and Liquid Silicon Infiltration Parameters for the Processing of C C SiC Composites
Tulbez, Simge; Esen, Ziya; Dericioğlu, Arcan Fehmi (2016-11-25)
The aim of the current study is to investigate the production and characterization of Carbon Fiber Reinforced Silicon Carbide (C/C-SiC) Matrix Composites. Liquid silicon infiltration (LSI) method was utilized to produce the C/C-SiC composites. Processing of these composites via LSI process contains there main steps: Carbon Fiber Reinforced Polymer (CFRP) composite production, pyrolysis and liquid silicon infiltration. Each production step has an important effect on the efficiency of the LSI process, therefo...
Citation Formats
A. Miray, I. Uyar, and D. Çöker, Experimental Investigation of the Effect of CNT addition on the strength of CFRP Curved Composite Beams,. 2015, p. 184.