Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interdisciplinary Earthquake Hazard Research in Gulf of Aqaba
Date
2019-04-12
Author
Jonsson, Sigurjon
Avşar, Ulaş
Bektaş, Zeynep
Castro Perdomo, Ne
Gabriel, Aa
Hanafy, Ss
Klinger, Yann
Lefevre, Mm
Martin, Mai
Masson, Ff
Matrau, Rr
Passone, Ll
Metadata
Show full item record
Item Usage Stats
137
views
0
downloads
Cite This
The Dead Sea fault system borders the north-moving Arabian plate and accommodates primarily left-lateral transform motion. Many devastating earthquakes have occurred on the Dead Sea fault during the past 2000 years, with the last major earthquake occurring in Gulf of Aqaba in 1995 (Mw=7.3), causing several fatalities and considerable damage in Egypt and Saudi Arabia. In the Gulf of Aqaba and Strait of Tiran (GAST) area, the Dead Sea fault system is trans-tensional with 3-4 en echelon fault segments within the gulf that bound three major pull-apart basins. Only a part of the GAST fault system ruptured in the 1995 earthquake, while other segments have not ruptured for several centuries. The recent decision of building a bridge between Saudi Arabia and Egypt, spanning Strait of Tiran, and the new city of NEOM has put this area in focus, e.g., with respect to earthquake hazard. To improve our understanding of the tectonics and the level of earthquake activity in the GAST area, we report on an ongoing project aimed at constraining better the location and geometry of active faults in the gulf and its overall tectonics, as well as obtaining new information about how frequent and how large major earthquakes in the area likely are. We have acquired new high-resolution multibeam bathymetric data and are re-analyzing decades of earthquake data to map active faults within the gulf. To get better information about the structure and activity of normal faults bounding the gulf's pull-a-part basins, we have run a seismic survey along a 7 km long profile, crossing one of the faults, and dated samples from uplifted coral terraces along the gulf. In addition, we have installed and remeasured a geodetic GPS network to constrain the moment accumulation rate in the area and collected sediment cores from the seafloor for evidence of pre-historic earthquakes. Finally, we are running scenario calculations to estimate expected shaking levels in future major earthquakes on the GAST faults. We therein specifically acknowledge the new observational constraints as well as complex fault geometries and subsurface structure. Together the results will significantly improve knowledge of the active tectonics in the GAST area and provide valuable information for future seismic hazard assessments.
URI
https://hdl.handle.net/11511/85112
Conference Name
European Geosciences Union - General Assembly (7 - 12 Nisan 2019)
Collections
Department of Geological Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of seismic anisotropy across Central Anatolia by shear wave splitting
Pamir, Dilekcan; Özacar, Atilla Arda; Department of Geological Engineering (2014)
Central Anatolia plays a significant role to connect the theories on the ongoing tectonic escape, the African Plate subduction along Cyprus Arc and the collision of Arabian Plate along Bitlis Suture. On the other hand, the shear wave splitting measurements which characterize the seismic anisotropy are very sparse in the region. The seismic data recorded by national seismic networks with a denser coverage provides a unique opportunity to analyze the effect of present slab geometry (slab tears, slab break-off...
Analysis of Seismic Anisotropy Across Central Anatolia by Shear Wave Splitting
Pamir, Dilekcan; Abgarmi, Bizhan; Özacar, Atilla Arda (2014-04-27)
Central Anatolia holds the key to connect the theories about the ongoing tectonic escape, the African Plate subduction along Cyprus Arc and the indenter-style collision of Arabian Plate along Bitlis Suture. However, the shear wave splitting measurements which are needed to characterize seismic anisotropy are very sparse in the region. Recently, seismic data recorded by national seismic networks (KOERI, ERI-DAD) with dense coverage, provided a unique opportunity to analyze the effect of present slab geometry...
Sedimentary records of past earthquakes in Boraboy Lake during the last ca 600 years (North Anatolian Fault, Turkey)
Avşar, Ulaş; De Batıst, Marc; Schmidt, Sabine; Fagel, Nathalie (2015-09-01)
Multiproxy sedimentological analyses along 4.9 m-long sequence of Boraboy Lake, which is located on the central eastern part of the North Anatolian Fault (NAF), reveal the sedimentary traces of past large earthquakes in the region. The lake has a relatively large catchment area (10 km(2)) compared to its size (0.12 km(2)), which renders sedimentation sensitive to heavy rain/storm events. Accordingly, the background sedimentation, which is composed of faintly laminated reddish/yellowish brown clayey silt, is...
NEOGENE-RECENT SEDIMENTATION AND DEVELOPMENT OF THE ADANACILICIAN BASIN
EVANS, G; GORUR, N; ALAVI, N (1988-08-01)
The Adana-Cilician basin formed by interaction between the African, Arabian, and Anatolian plates. The basin has been filled asymmetrically from the north and northeast with the northeastern extremity having been completely filled to form the Adana basin beneath the plain of the Seyhan delta. There is no direct borehole evidence from the submarine areas, but coastal boreholes have revealed the presence of at least 6 km of Neogene sediment. The Burdigalian-Serravalian interval is dominated by turbidites and ...
Understanding tsunamis, potential source regions and tsunami-prone mechanisms in the Eastern Mediterranean
Yolsal, S.; Taymaz, Tuncay; Yalçıner, Ahmet Cevdet (Geological Society of London, 2007-01-01)
Historical tsunamis and tsunami propagation are synthesized in the Eastern Mediterranean Sea region, with particular attention to the Hellenic and the Cyprus arcs and the Levantine basin, to obtain a better picture of the tsunamigenic zones. Historical data of tsunami manifestation in the region are analysed, and compared with current seismic activity and plate interactions. Numerical simulations of potential and historical tsunamis reported in the Cyprus and Hellenic arcs are performed as case studies in t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Jonsson et al., “Interdisciplinary Earthquake Hazard Research in Gulf of Aqaba,” presented at the European Geosciences Union - General Assembly (7 - 12 Nisan 2019), Vienna, Austria, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/85112.