Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of Drop-Weight Impact Test on Composite Laminates using Finite Element Method
Download
1-s2.0-S2452321619305773-main.pdf
Date
2019-01-01
Author
Bozkurt, Mirac Onur
Parnas, Kemal Levend
Çöker, Demirkan
Metadata
Show full item record
Item Usage Stats
298
views
118
downloads
Cite This
This study presents the simulation of standard drop-weight impact test on a [0/90/0]s composite laminate. For this purpose, a three-dimensional virtual test setup is developed in ABAQUS/Explicit finite element tool. Hemispherical impactor and specimen fixture are modeled as rigid bodies. Composite plate is modeled as a 3-D deformable solid and discretized using a biased mesh for computational efficiency. For simulation of ply damage in the composite laminate, a continuum damage mechanics based damage model is developed and implemented into the analysis via a user-written subroutine VUMAT. Delamination damage is simulated by inserting cohesive elements at the interfaces of plies having different orientations. Results show that the initial failure mechanism in the 3-D low-velocity impact event is the matrix cracking in the lowermost plies independent from the stacking sequence of the laminate. Furthermore, the simulation accurately predict that delaminated regions expand mainly in the same direction as of the fibers of the lower adjacent layer in accordance with the bending stiffness mismatching concept.
Subject Keywords
Drop-weight impact
,
Finite element analysis
,
Composite
,
Matrix crack
,
Delamination
,
Delamination
URI
https://linkinghub.elsevier.com/retrieve/pii/S2452321619305773
https://hdl.handle.net/11511/85328
Journal
Procedia Structural Integrity
DOI
https://doi.org/doi.org/10.1016/j.prostr.2019.12.103
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Simulation of Drop-Weight Impact Test on Composite Laminates using Finite Element Method
Bozkurt, Mirac Onur; Parnas, Levend; Çöker, Demirkan (Elsevier BV; 2019-01-01)
This study presents the simulation of standard drop-weight impact test on a [0/90/0]s composite laminate. For this purpose, a three-dimensional virtual test setup is developed in ABAQUS/Explicit finite element tool. Hemispherical impactor and specimen fixture are modeled as rigid bodies. Composite plate is modeled as a 3-D deformable solid and discretized using a biased mesh for computational efficiency. For simulation of ply damage in the composite laminate, a continuum damage mechanics based damage model ...
Simulation of Impact Induced Damage Process in a Carbon/Epoxy Composite Beam
Bozkurt, Mirac Onur; Çöker, Demirkan; Parnas, Kemal Levend (2018-12-01)
This paper presents numerical investigation of low-velocity impact (LVI) damage process in a unidirectional [0/90]s carbon/epoxy composite beam. Numerical simulations based on finite element method are conducted in ABAQUS/Explicit. A 3D model representing LVI experiments is generated. Matrix and fiber damage mechanisms are simulated by implementation of continuum damage mechanics based composite damage model with Hashin failure initiation criteria via a user-written VUMAT subroutine. Cohesive interfaces are...
Design and implementation of low leakage MEMS microvalves
Yıldırım, Ender; Külah, Haluk; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2011)
This thesis presents analysis, design, implementation, and testing of electrostatically actuated MEMS microvalves. The microvalves are specifically designed for lab-on-a-chip applications to achieve leakage ratios below 0.1 at pressure levels in the order of 101 kPa. For this purpose, two different microvalves are presented in the study. In the proposed designs, electrostatic actuation scheme is utilized to operate the microvalves in normally open and normally closed modes. Characterization of normally open...
Design of a MEMS based hydraulic pressure sensor
Göreke, Utku; Azgın, Kıvanç; Beyaz, Mustafa İlker; Department of Micro and Nanotechnology (2016)
This dissertation presents a novel technique for detection of hydraulic pressure by using a MEMS resonant sensor. Proposed sensor utilizes a double ended tuning fork (DETF) resonator. In the literature tuning forks are used for measurement of the deflection of a diaphragm. However, in this study, a tuning fork is configured to lay in orthogonal direction with a diaphragm of which center point deflection is being measured. Upon application of pressure, center deflection of the diaphragm induces an axial comp...
Numerical investigation of non-homogenous plastic deformation in quenching process
Gür, Cemil Hakan (2001-12-01)
The aim of the study is to investigate the evolution of internal stresses and non-homogeneous plastic deformation in quenching by numerical simulation. This paper presents the finite element model of quenching of axisymmetric components and the results of various numerical experiments. In the simulation, first the temperature distribution is determined as a function of geometry and time, Then. a model is described to give the volume fractions of phases as a function of time for the corresponding cooling cur...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. O. Bozkurt, K. L. Parnas, and D. Çöker, “Simulation of Drop-Weight Impact Test on Composite Laminates using Finite Element Method,”
Procedia Structural Integrity
, pp. 206–214, 2019, Accessed: 00, 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2452321619305773.