Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On Orbit Modulation Transfer Function Estimation for BILSAT Imagers
Date
2006-07-06
Author
Leloğlu, Uğur Murat
Metadata
Show full item record
Item Usage Stats
137
views
0
downloads
Cite This
BiLSAT, launched to its sun-synchronous orbit on 27.09.2003, is a 129 Kg small satellite carrying a panchromatic camera and a 4band multispectral camera with Ground Sampling Distances (GSD) 12.6 m and 28 m, respectively. The multispectral camera is composed of 4 totally independent cameras. All five refractive optic cameras have 2048 by 2048 frame CCDs as sensors. The overall Modulation Transfer Functions (MTF) of the imaging systems are very important for characterization of imagers. In this study, the MTF of BiLSAT imagers are calculated using two different methods. The first method for image-based MTF determination uses sharp linear edges for estimating the Edge Spread Function (ESF), from which Point Spread Function (PSF) is obtained by differentiation. A man-made high-contrast almost linear structure is used as imaging target. For precise detection of the edges, a 2D edge model is fitted to manually picked linear edge and the root-meansquare (RMS) difference between the image and the model is minimized by gradient search. Then, a parametric curve fitting is performed using a new parametric model. The PSF and MTF are obtained after differentiation and Fourier transformation, respectively. Second method is based on comparing BiLSAT images to high-resolution IKONOS images whose PSF is already known. The blur function that minimizes the RMS difference between the registered images is estimated. Image registration, blur estimation and radiometric correction parameter estimation are performed simultaneously. The fact that the images are taken with 3 months time difference and from slightly different angles cause difficulties. Small and almost planar areas are chosen to avoid parallax effects. Finally, the results obtained by two different methods are compared and the results are discussed.
Subject Keywords
Cal/Val
,
Modeling
,
Optical
URI
https://hdl.handle.net/11511/86200
https://www.scopus.com/record/display.uri?eid=2-s2.0-34848909874&origin=resultslist&sort=plf-f&src=s&st1=&st2=&sid=643bec08cf0e4fce9469cd18a40f8672&sot=b&sdt=b&sl=83&s=TITLE-ABS-KEY+%28On+Orbit+Modulation+Transfer+Function+Estimation+for+BILSAT+Imagers%29&relpos=0&citeCnt=5&searchTerm=
Conference Name
ISPRS Commission 1 Symposium: From Sensors to Imagery, 4 - 06 Temmuz 2006
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Link analysis for BILSAT-1
Telli, Ali; Es, Alphan (2006-03-11)
,BILSAT-1, a 130 kg micro satellite, is Turkey's,2 first Low Earth Orbit Earth (LEO) observation satellite(1,2). The project was started in August 2001 at Surrey Satellite Technologies Limited (SSTL)'s facilities in Guildford, UK and BILSAT-1 was launched successfully from Plesetsk Cosmodrome, Russia in 27 September 2003. The main objective of the mission is remote sensing. The communications subsystem is a core system for Earth observation satellite. It is generally used for telemetry/telecommand signaling...
On channel capacity of FSO communication systems in anisotropic non-Kolmogorov strong turbulent atmosphere
Ata, Yalcin (The Optical Society, 2019-09-01)
Average channel capacity of free space optical (FSO) communication systems using a Gaussian beam with the intensity modulation and direct detection technique is investigated in anisotropic non-Kolmogorov strong turbulent atmosphere. The channel model is selected as gamma-gamma distribution, which is valid for strong turbulence. Obtained results show that anisotropy in both the horizontal and vertical affects the average channel capacity of an FSO communication system positively. Average channel capacity inc...
Silicon nanowire - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells
Ozdemir, Baris; Kulakci, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah (2011-09-12)
Radial heterojunctions are known to exhibit magnificent anti-reflectivity and enhanced carrier collectivity due to short carrier diffusion distances. In this work, silicon nanowire-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) radial heterojunction solar cells are presented. Both layers of the heterojunction are fabricated using simple and cost-effective methods. Radial heterojunctions showed remarkable improvements in solar cell characteristics compared to planar heterojunctions, fabricated under...
Geometric Camera Calibration of BiLSAT Small Satellite Preliminary Results
Friedrich, Jurgen; Leloğlu, Uğur Murat; Tunalı, Erol (null; 2006-02-14)
The interior geometric calibration of the multi-spectral camera of BiLSAT satellite is aimed using three sets of images from Ankara. Each set contains four different images for channels Red, Green, Blue (RGB), and Near Infra Red (NIR) in which well-defined target points were identified and their image coordinates measured. The target points’ UTM coordinates were extracted from aerial photos or topographic maps and collected from field using hand-held GPS receiver. A least square parameter estimation was the...
GEZGIN & GEZGIN-2: Adaptive real-time image processing subsystems for earth observing small satellites
Ismailoglu, N.; Benderli, O.; Yesil, S.; Sever, Ramazan; Okcan, B.; Sengul, O.; Oktem, Rusen (2006-06-18)
GEZGIN and GEZGIN-2 are real-time multispectral image processing subsystems developedfor BILSAT-1 and RASAT satellites respectively, the first two earth observing small satellites of Turkey. Main functionality of these subsystems is to compress in real-time multi-spectral images received concurrently from imagers, using JPEG2000 Image Compression algorithm. The compression features are controlled through user-supplied parameters uploaded in-orbit, so that the compression rate could be adapted to bandwidth, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. M. Leloğlu, “On Orbit Modulation Transfer Function Estimation for BILSAT Imagers,” 2006, p. 45, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86200.