Application of spatial h ∞ control technique for active vibration control of a smart beam

2007-06-04
Ömer Faruk, Kırcalı
Yaman, Yavuz
Volkan, Nalbantoğlu
Şahin, Melin
Fatih Mutlu, Karadal
This study presents the design and implementation of a spatial H∞ controller for the active vibration control of a cantilevered smart beam. The smart beam consists of a passive aluminum beam (507x51x2mm) and eight symmetrically surface bonded SensorTech BM500 type PZT (Lead-Zirconate-Titanate) patches (25x20x0.5mm). PZT patches are used as actuators and a laser displacement sensor is used as sensor. The smart beam was analytically modelled by using the assumed-modes method. The model only included the first two flexural vibrational modes and the model correction technique was applied to compensate the possible error due to the higher order modes. The system model was also experimentally identified and both theoretical and experimental models were used together in order to determine the modal damping ratios of the smart beam. A spatial controller was designed for the suppression of the vibrations of the smart beam due to its first two flexural modes. The designed controller was then im plemented to experimentally suppress the vibrations. This study also compared the effectiveness of a pointwise controller with the newly developed spatial one.
4th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2007, May 9-12, 2007

Suggestions

Application of spatial H-infinity control technique for active vibration control of a smart beam
Kircali, Oemer Faruk; Yaman, Yavuz; Nalbantoglu, Volkan; Şahin, Melin; Karadal, Fatih Mutlu (2007-05-12)
This study presents the design and implementation of a spatial H-infinity controller for the active vibration control of a cantilevered smart beam. The smart beam consists of a passive aluminum beam (507x51x2mm) and eight symmetrically surface bonded SensorTech BM500 type PZT (Lead-Zirconate-Titanate) patches (25x20x0.5mm). PZT patches are used as actuators and a laser displacement sensor is used as sensor. The smart beam was analytically modelled by using the assumed-modes method. The model only included t...
Optimal Control of a Smart Beam by Using a Luenberger Observer
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2013-06-26)
This paper presents the design of an optimal vibration control mechanism, namely an LQR controller, with a Luenberger observer for a smart beam having surface bonded piezoelectric sensors and actuators. The approach intends to suppress the vibrations of the first flexural resonance of the smart beam. The smart beam studied was a cantilever aluminium beam with eight surface bonded Lead-Zirconate-Titanate (PZT) patches in bimorph configuration. The smart beam was excited at its first resonance frequency (appr...
Active Vibration Suppression of a Smart Beam by Using an LQG Control Algorithm
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2011-06-22)
The aim of this study was to design and experimentally apply a Linear Quadratic Gaussian (LQG) controller for the active vibration suppression of a smart beam. The smart beam was a cantilever aluminum beam with eight symmetrically located surface-bonded PZT (Lead-Zirconate-Titanate) patches which were utilized both as sensor or actuator depending on their location. A group of PZT patches closed to the root of the beam was used as actuators in the bimorph configuration and a single patch was nominated as a s...
Active vibration suppression of a smart beam via self sensing piezoelectric actuator
Uğur, Arıdoğan; Şahin, Melin; Yaman, Yavuz; Volkan, Nalbantoğlu (null; 2009-08-17)
In this paper, an active vibration suppression of a smart beam using self-sensing piezoelectric actuator is presented. The smart beam is composed of a cantilever aluminium beam with four surface-bonded piezoelectric patches symmetrically located both side of the beam. Piezoelectric materials can transform mechanical deformation to electric signal and vice versa. This property of piezoelectric materials enables them to be used as an actuator and a sensor. In self-sensing actuator configuration, the piezoelec...
Active Vibration Control of a Smart Fin
Ülker, Fatma Demet; Nalbantoğlu, Volkan; Yong, Chen; Davıd, Zımcık; Yaman, Yavuz (2009-05-04)
This paper summarizes the design and wind tunnel experimental verifications of robust H∞ controllers for active vibration suppression of a dynamically scaled F-18 vertical smart fin. The smart fin consists of a cantilevered aluminium plate structure with surface bonded piezoelectric (Lead-Zirconate-Titanete, PZT) patches, Integrated Circuit Piezoelectric (ICP) type accelerometers and strain gauges. For H∞ controller design, the transfer function of the fin was first estimated outside the wind tunnel. Then, ...
Citation Formats
K. Ömer Faruk, Y. Yaman, N. Volkan, M. Şahin, and K. Fatih Mutlu, “Application of spatial h ∞ control technique for active vibration control of a smart beam,” Angers, France, 2007, vol. 2, p. 322, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86682.