Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Three dimensional delamination analysis in composite open hole tensile specimens with cohesive zone method
Date
2016-01-01
Author
Bartan Kumbasar, Busra
Acar, Bulent
Kayran, Altan
Metadata
Show full item record
Item Usage Stats
240
views
0
downloads
Cite This
In this article, finite element analyses (FEA) are conducted for delamination analysis in composites using three dimensional (3D) solid cohesive elements. The analyses are validated with tests. The main objective of the study is to predict damage initiation and propagation utilizing three dimensional (3D) solid cohesive elements in an implicit finite element analysis framework. First study is conducted for Double Cantilever Beam (DCB) and End Notch Flexure (ENF) specimens in ABAQUS with cohesive zone method (CZM) to model the delamination initiation and propagation. The composite material that is studied is twill and its fracture toughness data is obtained from Mode I (opening mode) and Mode II (shear mode) tests. For verification purposes, results of the delamination analyses are also compared with the experimental results available in the literature. The composite layups and cohesive zone are generated with 8 node solid elements. Second study is conducted for open hole tensile specimens in ABAQUS with CZM. First, tensile tests are performed for open hole tensile specimens without the teflon film that is used for delamination initiation. Region of delamination initiation and direction of delamination propagation for open hole specimens with the film is predicted by analyses and tests. Secondly, tensile tests are of open hole tensile specimens with the film are performed. Delamination front is scanned by the C-Scan. Maximum increment of defect area is %31.57 in experimental results and %30.6 in finite element analysis for open hole tensile specimens with the film (DOHT). Also, test and analysis results for strain gauges are compatible with each other for open hole tensile specimens without the film (OHT) and DOHT. Therefore, analysis outcomes are confirmed with experimental results.
Subject Keywords
Cantilever beams
,
Delamination
,
Fracture toughness
,
Structural dynamics
,
Tensile testing
URI
https://hdl.handle.net/11511/86859
DOI
https://doi.org/10.2514/6.2016-0980
Conference Name
57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-8 January 2016
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Parametric Study of Delamination Analysis in Composites with Cohesive Zone Method
Bartan, Büşra; Kayran, Altan; Acar, Bülent (null; 2015-09-10)
In this article, parametric study is conducted for delamination analysis in composites using three dimensional (3D) solid cohesive elements. The main objective of the study is to investigate the effect of normal mode fracture energy, stiffness of cohesive elements and element size on the damage initiation and propagation utilizing three dimensional (3D) solid cohesive elements in an implicit finite element analysis framework. Parametric study is conducted for Double Cantilever Beam (DCB) and End Notch Flexu...
Three dimensional frame element formulation for nonlinear analysis of semi rigid steel structures
Özel, Halil Fırat; Sarıtaş, Afşin; Karakaş, Zafer (null; 2016-09-21)
In this paper, a force-based three-dimensional frame finite element formulation with spread of inelasticity through the element and localized nonlinear semi-rigid connections is developed. The proposed model utilizes Euler-Bernoulli beam theory assumptions, and adopts fiber discretization of monitored sections along element length and section depth for the spread of inelasticity in order to capture axial force and biaxial bending moment interaction. Defining any type of semi-rigid either linear or nonlinear...
A Three dimensional mixed formulation nonlinear frame finite element based on hu-washizu functional
Soydaş, Ozan; Sarıtaş, Afşin; Department of Civil Engineering (2013)
A three dimensional nonlinear frame finite element is presented in this analytical study by utilizing Hu-Washizu principle with three fields of displacement, strain and stress in the variational form. Timoshenko beam theory is extended to three dimensions in order to derive strains from the displacement field. The finite element approximation for the beam uses shape functions for section forces that satisfy equilibrium and discontinous section deformations along the beam. Nonlinear analyses are performed by...
An accurate nonlinear 3d Timoshenko beam element based on Hu-Washizu functional
Soydas, Ozan; Sarıtaş, Afşin (Elsevier BV, 2013-09-01)
An accurate 3d mixed beam element that is efficient especially in nonlinear analysis is presented in this paper. The mathematical theory is based on Hu-Washizu principle that uses three-fields in the variational form. The composition of the variational form ensures independent selection of displacement, stress and strain fields. Timoshenko beam theory is extended to three dimensions for deriving strains from displacement field. Numerical integration of stress strain relations along control sections is carri...
Three dimensional rocket nozzle design using adjoint method
Eyi, Sinan (2013-01-01)
A design optimization method based on three dimensional Euler equations is developed. A finite volume method is implemented to discretize the Euler equations. Newton’s method is used to solve the discretized form of Euler equations. Newton’s method requires the calculation of the Jacobian matrix which is the derivative of the residual vector with respect to the flux vector. Different upwind methods are used in the calculation of flux vectors. Numerical and analytical methods are utilized in the evaluation o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Bartan Kumbasar, B. Acar, and A. Kayran, “Three dimensional delamination analysis in composite open hole tensile specimens with cohesive zone method,” California, USA, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86859.