Modeling of alumina production for identification of solar hybridization paths

Abu Zanouneh, Basil
Tarı, İlker
Bauxite to Alumina production processes of Seydisehir Aluminum Plant are investigated based on a previous study detailing the sub-processes and auditing the mass balances of the plant. The details of the balances are used to form a system model using Aspen Pro commercial software package. The mass balances of the system model are used for model validation by comparing them with the literature data. The validated model is used for determining the mass and energy flows together with the flow properties. Based on detailed numerical results of mass and energy flows, possible paths for hybridization with solar energy are identified.
The International Aluminium-Themed Engineering and Natural Sciences Conference - IATENS 2019


Synthesis and structural characterization of co-al binary alloys
Dinler, Ali Fırat; Mekhrabov, Amdulla O.; Akdeniz, Mahmut Vedat (null; 2018-10-27)
As a part of an investigation on the design and development of Co-based superalloys for hightemperature applications, studies have been made to investigate synthesis route, heat treatment regime and structural characterization of binary Co-Al alloys. Cobalt-rich side of Co-Al binary system was examined by preparing 6 different alloy compositions (1.23, 8.40, 16.72, 19.50, 21.50 and 25 at. % Al), which were produced by arc melting technique. It has been found that DOOR\V KDYLQJ UHODWLYHO\ KLJK $O FRQWHQW • ...
Modeling of CO2 storage in an oil reservoir
Gumrah, F.; Dulger, M.; Gunaydin, D.; Senel, O. (Informa UK Limited, 2008-01-01)
This study provides an overview for the carbon dioxide sequestration process in an oil reservoir by using the software CMG's GEM. Different scenarios are applied for the oil reservoir description. Firstly, a single layered reservoir is considered and simulation studies are performed, as this reservoir is homogeneous, heterogeneous and fractured. Secondly, a multi-layered reservoir is examined. In the second case, a heterogeneous system and a heterogeneous system composed of homogenous layers are selected. F...
Characterization of lignocellulose biomass and model compounds by thermogravimetry
Kök, Mustafa Verşan (Informa UK Limited, 2017-01-01)
In this research, combustion characteristics of lignocellulose biomass (hazelnut shell) and three main components (cellulose, hemicellulose, and lignin) were investigated using thermogravimetry (TGA-DTG) technique at different heating rates. The ignition, peak, burn-out temperatures, and the heat liberation of lignocellulose biomass and three main components were also measured. Two different model-free kinetic methods, known as Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS), were used in order to...
Modeling of catalytic ozonation process in a three-phase reactor
Erol, Funda; Oezbelge, Tuelay A.; Oezbelge, H. Oender (Informa UK Limited, 2009-01-01)
In this research, the main objective was to determine the flow characteristics of a three-phase reactor in order to use this knowledge in the modeling of catalytic ozonation of aqueous dye solutions. Therefore, the stimulus-response method was used in the tracer experiments; thus, the degree of liquid mixing in the reactor was estimated by means of residence time distribution, Peclet number and axial dispersion coefficient in the presence and the absence of the catalyst. Experimental data were obtained by p...
Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis
Varol, Murat; Atımtay, Aysel; Bay, B.; Olgun, H. (2010-10-20)
In this study, combustion and co-combustion characteristics of three biomass fuels and three Turkish lignite coals were investigated by using a thermo gravimetric analyzer. There are just a few studies investigating the co-combustion characteristics of coal and biomass, and the synergistic effect of their various combinations on the peak temperatures and burnout times.
Citation Formats
B. Abu Zanouneh and İ. Tarı, “Modeling of alumina production for identification of solar hybridization paths,” Seydisehir, Turkey, 2019, p. 425, Accessed: 00, 2021. [Online]. Available: